arrow-left

All pages
gitbookPowered by GitBook
1 of 10

Loading...

Loading...

Loading...

Loading...

Loading...

Loading...

Loading...

Loading...

Loading...

Loading...

4k-rsa

factordb go brrr

calc d

hashtag
flag{t0000_m4nyyyy_pr1m355555}

Public Key:

n: 5028492424316659784848610571868499830635784588253436599431884204425304126574506051458282629520844349077718907065343861952658055912723193332988900049704385076586516440137002407618568563003151764276775720948938528351773075093802636408325577864234115127871390168096496816499360494036227508350983216047669122408034583867561383118909895952974973292619495653073541886055538702432092425858482003930575665792421982301721054750712657799039327522613062264704797422340254020326514065801221180376851065029216809710795296030568379075073865984532498070572310229403940699763425130520414160563102491810814915288755251220179858773367510455580835421154668619370583787024315600566549750956030977653030065606416521363336014610142446739352985652335981500656145027999377047563266566792989553932335258615049158885853966867137798471757467768769820421797075336546511982769835420524203920252434351263053140580327108189404503020910499228438500946012560331269890809392427093030932508389051070445428793625564099729529982492671019322403728879286539821165627370580739998221464217677185178817064155665872550466352067822943073454133105879256544996546945106521271564937390984619840428052621074566596529317714264401833493628083147272364024196348602285804117877
e: 65537
c: 3832859959626457027225709485375429656323178255126603075378663780948519393653566439532625900633433079271626752658882846798954519528892785678004898021308530304423348642816494504358742617536632005629162742485616912893249757928177819654147103963601401967984760746606313579479677305115496544265504651189209247851288266375913337224758155404252271964193376588771249685826128994580590505359435624950249807274946356672459398383788496965366601700031989073183091240557732312196619073008044278694422846488276936308964833729880247375177623028647353720525241938501891398515151145843765402243620785039625653437188509517271172952425644502621053148500664229099057389473617140142440892790010206026311228529465208203622927292280981837484316872937109663262395217006401614037278579063175500228717845448302693565927904414274956989419660185597039288048513697701561336476305496225188756278588808894723873597304279725821713301598203214138796642705887647813388102769640891356064278925539661743499697835930523006188666242622981619269625586780392541257657243483709067962183896469871277059132186393541650668579736405549322908665664807483683884964791989381083279779609467287234180135259393984011170607244611693425554675508988981095977187966503676074747171

worst-pw-manager

the rc4 alg is perfect and works as intended however the key gen is flawed

def generate_key():
    key = [KeyByteHolder(0)] * 8 # TODO: increase key length for more security?
    for i, c in enumerate(take(flag, 8)): # use top secret master password to encrypt all passwords
        key[i].num = c
    return key

As you can see in python it multiplies the key by 8 which from when i learned from making my maze alg, means changing one val changes all of the others at the same time. this creates a key thats 8 repeats of the same char. i brute forced this and checked it to get the correct char.

the output gives repeat of fptdics_htaopps}ysnnp{idtsltu_idr_aoug_iy and creates

hashtag
flag{crypto_is_stupid_and_python_is_stupid}

12 Shades of Redpwn

Starting from the top as 0, represent each colour as a base12 digit to get 86908187A349994397974192497B41977B44927B449698A5.

Then convert from base12 each 2 chars to get flag:

line = "86908187A349994397974192497B41977B44927B449698A5"
n = 2
x  = [line[i:i+n] for i in range(0, len(line), n)]
o = ""
for i in x:
  o += chr(int(i,12))
print(o)

hashtag
flag: flag{9u3ss1n9_1s_4n_4rt}

pseudo-key

vigenere cipher.

Testing different keys gives redpwwwnctf from iigesssaemk

decrypt z_jjaoo_rljlhr_gauf_twv_shaqzb_ljtyut

to get...

hashtag

Alien Transmissions v2

hashtag
Brief

The aliens are at it again! We've discovered that their communications are in base 512 and have transcribed them in base 10. However, it seems like they used XOR encryption twice with two different keys! We do have some information:

  • This alien language consists of words delimitated by the character represented as 481

flag{i_guess_pseudo_keys_are_pseudo_secure}

The two keys appear to be of length 21 and 19

  • The value of each character in these keys does not exceed 255

  • Find these two keys for me; concatenate their ASCII encodings and wrap it in the flag format.

  • 481 is probably going to be the most common number, as this is the alien word delimiter. We can use this to execute a frequency attack.

    The lowest common multiple of 21 and 19 is 399. The alien message was XORed with the 21 length key, and then the 19 length key. Because of how xor works, message XOR first key XOR second key = message XOR (first key XOR second key)

    Therefore, if we stack the two keys against each other, and XOR (that is 21 19-length key XOR 19 21-length key) we get an "ultra-key" of length 399.

    How can we derive this key? Frequency analysis, of course.

    If we take every 399th number with different starting points(like nums[0::399], nums[1::399], etc.) then the subset of numbers we get from this will all be XORed with the same value!

    This means we can get these subsets and run frequency analysis on them separately. The most common number is bound to be 481, so we can run freq analysis on these subsets, and the most common number will be 481 xored with the respective element of the "ultra-key". Using this, we can leak the ultra-key.

    Now what? We've got 21 19-length key XOR 19 21-length key. Since ultimately this is to become a flag, courtesy of will, we can reduce the possible chars in each key to qwertyuiopasdfghjklzxcvbnmmQWERTYUIOPASDFGHJKLZXCVBNM1234567890_,.'?!@$<>*:-"

    So...

    We can generate a "mapping". By XORing every possible pair of chars in our alphabet, we can generate a mapping of possible values to the pair of characters that matches.

    Then, we can significantly reduce the amount of possible chars we have for one key. We started with the 19-length key. Again, getting every 19th char starting at different starting points, we can get one char of the key XORed with lots of different other, PRINTABLE AND IN THE ALPHABET, values.

    Essentially, for each character of the key, we can create a list of possible numbers such that every number is char xor K for some PRINTABLE AND IN THE ALPHABET K.

    From there, we can use the alphabet as a whitelist for possible chars in one position of the key.

    If it's impossible to xor a char and another char in the alphabet to get a certain number in the subset we create, then we know that char of the key can NOT be that.

    Using a search like so,

    We can reduce the 19-length key to all of it's possible values in each position, getting:

    we could use more frequency analysis to enumerate from there, but it's clear that this is going to be _th3_53c0nd_15_th15

    From there, we simply XOR _th3_53c0nd_15_th15 back with our ultra-key to get the first part of the flag, h3r3'5_th3_f1r5t_h4lf

    hashtag
    Flag: flag{h3r3'5_th3_f1r5t_h4lf_th3_53c0nd_15_th15}

    import string
    import itertools
    from Crypto.Util.strxor import strxor
    def getfreqs(numbers):
        counts = {number: numbers.count(number) for number in set(numbers)}
        return counts
    def getmax(freqs):
        return max(freqs.keys(), key=freqs.__getitem__)
    def xor(b1,b2):
        return bytes(byte1 ^ byte2 for byte1,byte2 in zip(b1,b2))
    with open("encrypted.txt") as f:
        lines = f.readlines()
        nums = [int(x) for x in lines]
    common = 481
    leakedkey = []
    for i in range(399):
        subset = nums[i::399]
        freqs = getfreqs(subset)
        maximum = getmax(freqs)
        leak = maximum ^ common
        leakedkey.append(leak)
    print(bytes(leakedkey))
    mapping = {}
    for pair in itertools.combinations_with_replacement("qwertyuiopasdfghjklzxcvbnmmQWERTYUIOPASDFGHJKLZXCVBNM1234567890_,.'?!@$<>*:-",2):
        mapping[pair] = strxor(pair[0].encode(),pair[1].encode())[0]
    print(mapping)
    for i in range(21):
        subset = leakedkey[i::21]
        subset = list(filter(lambda x: x != 0,subset))
        possibles = list("qwertyuiopasdfghjklzxcvbnmmQWERTYUIOPASDFGHJKLZXCVBNM1234567890_,.'?!@$<>*:-")
        for num in subset:
            for char in possibles:
                found = False
                for key in mapping:
                    if mapping[key] == num:
                        if char in key:
                            found = True
                if not found:
                    possibles.remove(char)
        print(possibles)
    ['X', '_']
    ['t', '*']
    ['h', 'm']
    ['3', '6']
    ['X', '_']
    ['5']
    ['3']
    ['f', 'c']
    ['0']
    ['k', 'n', '0']
    ['d', 'c']
    ['Z', '_']
    ['1', '6']
    ['2', '5', '*']
    ['X', '_']
    ['t']
    ['o', 'h', 'm']
    ['1', '6']
    ['2', '5']

    seekrypt

    the xor process leeks info on the flag. we can get upper and lower bits of p and q. here is good resource

    https://github.com/ubuntor/coppersmith-algorithmarrow-up-right

    • sage go brrr (turned out my X,Y vals were too high ; has to not be bigger than actual prime [we dont know this] but big enough to reduce computation time)

    • get primes

    • unxor the original

    • get "r3ts.....th3_fl4g_1ts3lf!!!!}"

    apply root (raise to power phi / 4 ) if its 1 its square (has more roots - x prevents this if multiplied in)

    • retrieve bits

    • "flag{y0u_f0und_m0re_th4n_s3c"

    full flag

    hashtag
    Flag:flag{y0u_f0und_m0re_th4n_s3cr3ts.....th3_fl4g_1ts3lf!!!!}

    Script for doing this

    Script to get the output:

    itsy bitsy

    Theres a flaw in code that means every nth bit results in 1,

    which can be unxored later [used primes for efficiency - doesnt repeat bit]

    get every 7 bytes to get...

    hashtag
    flag{bits_leaking_out_down_the_water_spout}

    import socket
    host = "2020.redpwnc.tf"
    port = 31284
    ip = "35.231.164.133"#socket.gethostbyname(host)
    def crack():
        template = [x for x in "-"*500]
        for i in primes: # use ur own primes
            a = server(i-1,i)
            for k,l in enumerate(str(a)):
                if k%(i) == 0:
                    template[k] = str(int(l) ^ 1)
            print("".join(template))
    def server(i,j):
        s = socket.socket()
        s.connect((ip, port))
        a = s.recv(1024)
        print(a,i)
        s.send((str(i)+"\n").encode())
        a = s.recv(1024)
        print(a,j)
        s.send((str(j)+"\n").encode())
        out = s.recv(1024).decode().split(" ")[1]
        print(out)
        return out
    crack()
    def coron(pol, X, Y, k=2, debug=False):
        """
        Returns all small roots of pol.
        Applies Coron's reformulation of Coppersmith's algorithm for finding small
        integer roots of bivariate polynomials modulo an integer.
        Args:
            pol: The polynomial to find small integer roots of.
            X: Upper limit on x.
            Y: Upper limit on y.
            k: Determines size of lattice. Increase if the algorithm fails.
            debug: Turn on for debug print stuff.
        Returns:
            A list of successfully found roots [(x0,y0), ...].
        Raises:
            ValueError: If pol is not bivariate
        """
    
        if pol.nvariables() != 2:
            raise ValueError("pol is not bivariate")
    
        P.<x,y> = PolynomialRing(ZZ)
        pol = pol(x,y)
    
        # Handle case where pol(0,0) == 0
        xoffset = 0
    
        while pol(xoffset,0) == 0:
            xoffset += 1
    
        pol = pol(x+xoffset,y)
    
        # Handle case where gcd(pol(0,0),X*Y) != 1
        while gcd(pol(0,0), X) != 1:
            X = next_prime(X, proof=False)
    
        while gcd(pol(0,0), Y) != 1:
            Y = next_prime(Y, proof=False)
    
        pol = P(pol/gcd(pol.coefficients())) # seems to be helpful
        p00 = pol(0,0)
        delta = max(pol.degree(x),pol.degree(y)) # maximum degree of any variable
    
        W = max(abs(i) for i in pol(x*X,y*Y).coefficients())
        u = W + ((1-W) % abs(p00))
        N = u*(X*Y)^k # modulus for polynomials
    
        # Construct polynomials
        p00inv = inverse_mod(p00,N)
        polq = P(sum((i*p00inv % N)*j for i,j in zip(pol.coefficients(),
                                                     pol.monomials())))
        polynomials = []
        for i in range(delta+k+1):
            for j in range(delta+k+1):
                if 0 <= i <= k and 0 <= j <= k:
                    polynomials.append(polq * x^i * y^j * X^(k-i) * Y^(k-j))
                else:
                    polynomials.append(x^i * y^j * N)
    
        # Make list of monomials for matrix indices
        monomials = []
        for i in polynomials:
            for j in i.monomials():
                if j not in monomials:
                    monomials.append(j)
        monomials.sort()
    
        # Construct lattice spanned by polynomials with xX and yY
        L = matrix(ZZ,len(monomials))
        for i in range(len(monomials)):
            for j in range(len(monomials)):
                L[i,j] = polynomials[i](X*x,Y*y).monomial_coefficient(monomials[j])
    
        # makes lattice upper triangular
        # probably not needed, but it makes debug output pretty
        L = matrix(ZZ,sorted(L,reverse=True))
    
        if debug:
            print("Bitlengths of matrix elements (before reduction):")
            print(L.apply_map(lambda x: x.nbits()).str())
    
        L = L.LLL()
    
        if debug:
            print("Bitlengths of matrix elements (after reduction):")
            print(L.apply_map(lambda x: x.nbits()).str())
    
        roots = []
    
        for i in range(L.nrows()):
            if debug:
                print("Trying row %d" % i)
    
            # i'th row converted to polynomial dividing out X and Y
            pol2 = P(sum(map(mul, zip(L[i],monomials)))(x/X,y/Y))
    
            r = pol.resultant(pol2, y)
    
            if r.is_constant(): # not independent
                continue
    
            for x0, _ in r.univariate_polynomial().roots():
                if x0-xoffset in [i[0] for i in roots]:
                    continue
                if debug:
                    print("Potential x0:",x0)
                for y0, _ in pol(x0,y).univariate_polynomial().roots():
                    if debug:
                        print("Potential y0:",y0)
                    if (x0-xoffset,y0) not in roots and pol(x0,y0) == 0:
                        roots.append((x0-xoffset,y0))
        return roots
    
    size = 1024
    low = 496
    mid = 400
    high = 128
    
    
    X = Y = 2**(mid-1)
    
    n = 15208002172852064705513549049156125156229213752159018163825621612365155017442357321243997240694068589814280403280924059115680689958405528673283969584726875025903837971544565855345730100919461985993701827484692130096087415066915297046298354141978649627535608324891962634115164448150854962245168416609362554295547467846154568712738134639516660184864893586000423886731114509172379025554849606702807764604046562890333894888196970691461892191718079065215120535321387122435702257687877333759869565354852332910433540118176537491958544695956496612702255403127864825597702515541366203734967406176296928067151309367243599261047
    
    c0 = int("c24b08080224327e3e5c92c9fc01a796",16)
    c2 = int("28c7b802e5fd4ed05138cc51adb622bdd2c5eaa3676bc1f4f6fd6f95df7306d33ad44f89d46edc0ae0d2615a4b96ff6a57b6e01bdc1ff0ba7b17690721a1",16)
    
    d0 = int("9ebb4f84833afa3fa4145957bfcaf50b",16)
    d2 = int("9968f62b5af28332134fbd88a52db031d4573353acff68f800dfea6a4b97d1f5ca9d999aac7954df3bdf268b216cadf6a9198340ce404e075fef05772817",16)
    
    P.<x,y> = PolynomialRing(ZZ)
    pol = ((c0 * (2**(mid+low))) + c2 + (x * (2**low)))*((d0 * (2**(mid+low))) + d2 + (y * (2**low))) - n
    print("pol generated")
    res = coron(pol, X, Y)
    print("ok should give output")
    if len(res) > 0:
        p = (c0 * 2**(mid+low) + c2 + res[0][0] * 2**low)
        q = (d0 * 2**(mid+low) + d2 + res[0][1] * 2**low)
        #print(res)
        print('%d, %d' % (p,q))
    
    print(res)
    def coron(pol, X, Y, k=2, debug=False):
        """
        Returns all small roots of pol.
        Applies Coron's reformulation of Coppersmith's algorithm for finding small
        integer roots of bivariate polynomials modulo an integer.
        Args:
            pol: The polynomial to find small integer roots of.
            X: Upper limit on x.
            Y: Upper limit on y.
            k: Determines size of lattice. Increase if the algorithm fails.
            debug: Turn on for debug print stuff.
        Returns:
            A list of successfully found roots [(x0,y0), ...].
        Raises:
            ValueError: If pol is not bivariate
        """
    
        if pol.nvariables() != 2:
            raise ValueError("pol is not bivariate")
    
        P.<x,y> = PolynomialRing(ZZ)
        pol = pol(x,y)
    
        # Handle case where pol(0,0) == 0
        xoffset = 0
    
        while pol(xoffset,0) == 0:
            xoffset += 1
    
        pol = pol(x+xoffset,y)
    
        # Handle case where gcd(pol(0,0),X*Y) != 1
        while gcd(pol(0,0), X) != 1:
            X = next_prime(X, proof=False)
    
        while gcd(pol(0,0), Y) != 1:
            Y = next_prime(Y, proof=False)
    
        pol = P(pol/gcd(pol.coefficients())) # seems to be helpful
        p00 = pol(0,0)
        delta = max(pol.degree(x),pol.degree(y)) # maximum degree of any variable
    
        W = max(abs(i) for i in pol(x*X,y*Y).coefficients())
        u = W + ((1-W) % abs(p00))
        N = u*(X*Y)^k # modulus for polynomials
    
        # Construct polynomials
        p00inv = inverse_mod(p00,N)
        polq = P(sum((i*p00inv % N)*j for i,j in zip(pol.coefficients(),
                                                     pol.monomials())))
        polynomials = []
        for i in range(delta+k+1):
            for j in range(delta+k+1):
                if 0 <= i <= k and 0 <= j <= k:
                    polynomials.append(polq * x^i * y^j * X^(k-i) * Y^(k-j))
                else:
                    polynomials.append(x^i * y^j * N)
    
        # Make list of monomials for matrix indices
        monomials = []
        for i in polynomials:
            for j in i.monomials():
                if j not in monomials:
                    monomials.append(j)
        monomials.sort()
    
        # Construct lattice spanned by polynomials with xX and yY
        L = matrix(ZZ,len(monomials))
        for i in range(len(monomials)):
            for j in range(len(monomials)):
                L[i,j] = polynomials[i](X*x,Y*y).monomial_coefficient(monomials[j])
    
        # makes lattice upper triangular
        # probably not needed, but it makes debug output pretty
        L = matrix(ZZ,sorted(L,reverse=True))
    
        if debug:
            print("Bitlengths of matrix elements (before reduction):")
            print(L.apply_map(lambda x: x.nbits()).str())
    
        L = L.LLL()
    
        if debug:
            print("Bitlengths of matrix elements (after reduction):")
            print(L.apply_map(lambda x: x.nbits()).str())
    
        roots = []
    
        for i in range(L.nrows()):
            if debug:
                print("Trying row %d" % i)
    
            # i'th row converted to polynomial dividing out X and Y
            pol2 = P(sum(map(mul, zip(L[i],monomials)))(x/X,y/Y))
    
            r = pol.resultant(pol2, y)
    
            if r.is_constant(): # not independent
                continue
    
            for x0, _ in r.univariate_polynomial().roots():
                if x0-xoffset in [i[0] for i in roots]:
                    continue
                if debug:
                    print("Potential x0:",x0)
                for y0, _ in pol(x0,y).univariate_polynomial().roots():
                    if debug:
                        print("Potential y0:",y0)
                    if (x0-xoffset,y0) not in roots and pol(x0,y0) == 0:
                        roots.append((x0-xoffset,y0))
        return roots
    
    size = 1024
    low = 496
    mid = 400
    high = 128
    
    
    X = Y = 2**(mid-1)
    
    n = 15208002172852064705513549049156125156229213752159018163825621612365155017442357321243997240694068589814280403280924059115680689958405528673283969584726875025903837971544565855345730100919461985993701827484692130096087415066915297046298354141978649627535608324891962634115164448150854962245168416609362554295547467846154568712738134639516660184864893586000423886731114509172379025554849606702807764604046562890333894888196970691461892191718079065215120535321387122435702257687877333759869565354852332910433540118176537491958544695956496612702255403127864825597702515541366203734967406176296928067151309367243599261047
    
    c0 = int("c24b08080224327e3e5c92c9fc01a796",16)
    c2 = int("28c7b802e5fd4ed05138cc51adb622bdd2c5eaa3676bc1f4f6fd6f95df7306d33ad44f89d46edc0ae0d2615a4b96ff6a57b6e01bdc1ff0ba7b17690721a1",16)
    
    d0 = int("9ebb4f84833afa3fa4145957bfcaf50b",16)
    d2 = int("9968f62b5af28332134fbd88a52db031d4573353acff68f800dfea6a4b97d1f5ca9d999aac7954df3bdf268b216cadf6a9198340ce404e075fef05772817",16)
    
    P.<x,y> = PolynomialRing(ZZ)
    pol = ((c0 * (2**(mid+low))) + c2 + (x * (2**low)))*((d0 * (2**(mid+low))) + d2 + (y * (2**low))) - n
    print("pol generated")
    res = coron(pol, X, Y)
    print("ok should give output")
    if len(res) > 0:
        p = (c0 * 2**(mid+low) + c2 + res[0][0] * 2**low)
        q = (d0 * 2**(mid+low) + d2 + res[0][1] * 2**low)
        #print(res)
        print('%d, %d' % (p,q))
    
    print(res)

    Crypto

    base646464

    Use Cyberchef, base64 decode 25 times.

    hashtag
    Flag: flag{l00ks_l1ke_a_l0t_of_64s}

    Cyberchef URL:

    https://gchq.github.io/CyberChef/#recipe=From_Base64('A-Za-z0-9%2B/%3D',true)From_Base64('A-Za-z0-9%2B/%3D',true)From_Base64('A-Za-z0-9%2B/%3D',true)From_Base64('A-Za-z0-9%2B/%3D',true)From_Base64('A-Za-z0-9%2B/%3D',true)From_Base64('A-Za-z0-9%2B/%3D',true)From_Base64('A-Za-z0-9%2B/%3D',true)From_Base64('A-Za-z0-9%2B/%3D',true)From_Base64('A-Za-z0-9%2B/%3D',true)From_Base64('A-Za-z0-9%2B/%3D',true)From_Base64('A-Za-z0-9%2B/%3D',true)From_Base64('A-Za-z0-9%2B/%3D',true)From_Base64('A-Za-z0-9%2B/%3D',true)From_Base64('A-Za-z0-9%2B/%3D',true)From_Base64('A-Za-z0-9%2B/%3D',true)From_Base64('A-Za-z0-9%2B/%3D',true)From_Base64('A-Za-z0-9%2B/%3D',true)From_Base64('A-Za-z0-9%2B/%3D',true)From_Base64('A-Za-z0-9%2B/%3D',true)From_Base64('A-Za-z0-9%2B/%3D',true)From_Base64('A-Za-z0-9%2B/%3D',true)From_Base64('A-Za-z0-9%2B/%3D',true)From_Base64('A-Za-z0-9%2B/%3D',true)From_Base64('A-Za-z0-9%2B/%3D',true)From_Base64('A-Za-z0-9%2B/%3D',true)&input=Vm0wd2QyUXlVWGxWV0d4V1YwZDRWMVl3WkRSV01WbDNXa1JTVjAxV2JETlhhMUpUVmpBeFYySkVUbGhoTVVwVVZtcEJlRll5U2tWVWJHaG9UVlZ3VlZadGNFSmxSbGw1VTJ0V1ZXSkhhRzlVVmxaM1ZsWmFkR05GU214U2JHdzFWVEowVjFaWFNraGhSemxWVm14YU0xWnNXbUZrUjA1R1UyMTRVMkpIZHpGV1ZFb3dWakZhV0ZOcmFHaFNlbXhXVm0xNFlVMHhXbk5YYlVaclVqQTFSMVV5TVRSVk1rcElaSHBHVjFaRmIzZFdha1poVjBaT2NtRkhhRk5sYlhoWFZtMHhORmxWTUhoWGJrNVlZbFZhY2xWcVFURlNNVlY1VFZSU1ZrMXJjRWxhU0hCSFZqRmFSbUl6WkZkaGExcG9WakJhVDJOdFJraGhSazVzWWxob1dGWnRNSGhPUm14V1RVaG9XR0pyTlZsWmJGWmhZMnhXY1ZGVVJsTk5WbFkxVkZaU1UxWnJNWEpqUld4aFUwaENTRlpxUm1GU2JVbDZXa1prYUdFeGNHOVdha0poVkRKT2RGSnJhR2hTYXpWeldXeG9iMWRHV25STlNHaFBVbTE0VjFSVmFHOVhSMHB5VGxac1dtSkdXbWhaTW5oWFkxWkdWVkpzVGs1V2JGa3hWa1phVTFVeFduSk5XRXBxVWxkNGFGVXdhRU5UUmxweFVtMUdVMkpWYkRaWGExcHJZVWRGZUdOSE9WZGhhMHBvVmtSS1QyUkdTbkpoUjJoVFlYcFdlbGRYZUc5aU1XUkhWMjVTVGxOSGFGQlZiVEUwVmpGU1ZtRkhPVmhTTUhCNVZHeGFjMWR0U2tkWGJXaGFUVlp3YUZwRlpGTlRSa3B5VGxaT2FWSnRPVE5XTW5oWFdWWlJlRmRzYUZSaVJuQnhWV3hrVTFsV1VsWlhiVVpPVFZad2VGVXlkREJXTVZweVkwWndXR0V4Y0ROV2FrWkxWakpPU1dKR1pGZFNWWEJ2Vm10U1MxUXlUWGxVYTFwb1VqTkNWRmxZY0ZkWFZscFlZMFU1YVUxcmJEUldNalZUVkd4a1NGVnNXbFZXYkhCWVZHdGFWbVZIUmtoUFYyaHBVbGhDTmxkVVFtRmpNV1IwVTJ0a1dHSlhhR0ZVVnpWdlYwWnJlRmRyWkZkV2EzQjZWa2R6TVZZeVNrZGhNMmhYWVRGd2FGWlVSbFpsUm1SMVUyczFXRkpZUW5oV1YzaHJUa2RHUjFaWVpHaFNWVFZWVlcxNGQyVkdWblJOVldSV1RXdHdWMWxyVW1GWFIwVjRZMGhLV2xaWFVrZGFWV1JQVTBVNVYxcEhhR2hOU0VKMlZtMTBVMU14VVhsVmEyUlVZbXR3YjFWcVNtOVdSbXhaWTBaa2JHSkhVbGxhVldNMVlWVXhXRlZyYUZkTmFsWlVWa2Q0YTFOR1ZuTlhiRlpYWWtoQ1NWWkdVa2RWTVZwMFVtdG9VRll5YUhCVmJHaERUbXhrVlZGdFJtcE5WMUl3VlRKMGExZEhTbGhoUjBaVlZucFdkbFl3V25KbFJtUnlXa1prVjJFelFqWldhMlI2VFZaa1IxTnNXbXBTVjNoWVdXeG9RMVJHVW5KWGJFcHNVbTFTZWxsVldsTmhSVEZ6VTI1b1YxWjZSVEJhUkVaclVqSktTVlJ0YUZOaGVsWlFWa1phWVdReVZrZFdXR3hyVWtWS1dGUldXbmRsVm10M1YyNWtXRkl3VmpSWk1HaExWMnhhV0ZWclpHRldWMUpRVldwS1MxSXlSa2hoUlRWWFltdEtNbFp0TVRCVk1VMTRWVzVTVjJFeVVuRlZiR1EwVm14c2MxcEhPVmRTYkVwWlZHeGpOVll4V25OalJXaFlWa1UxZGxsV1ZYaFhSbFoxWTBaa1RsWXlhREpXTVZwaFV6RkplRlJ1VmxKaVJscFlWRlJHUzA1c1draGxSMFphVmpGS1IxUnNXbUZWUmxwMFZXNUNWMkpIYUVSVk1WcGhZMVpPY1ZWc1drNVdNVWwzVmxSS01HRXhaRWhUYkdob1VqQmFWbFp1Y0Zka2JGbDNWMjVLYkZKdFVubFhhMXByVmpKRmVsRnFXbGRoTWxJMlZGWmFXbVZXVG5KYVIyaE9UVzFvV1ZkV1VrZGtNa1pIVjJ4V1UySkdjSE5WYlRGVFRWWlZlV042UmxoU2EzQmFWVmMxYjFZeFdYcGhTRXBWWVRKU1NGVnFSbUZYVm5CSVlVWk9WMVpHV2xkV2JHTjRUa2RSZVZaclpGZGliRXBQVm14a1UxWXhVbGhrU0dSWFRWZDRlVlpYTVVkWFJrbDNWbXBTV2sxSGFFeFdNbmhoVjBaV2NscEhSbGRXTVVwUlZsUkNWazVXV1hoalJXaG9VakpvVDFVd1ZrdE5iRnAwVFZSQ1ZrMVZNVFJXVm1oelZtMUZlVlZzVmxwaVdGSXpXV3BHVjJOV1RuUlBWbVJUWWxob1lWZFVRbUZoTWtwSVUydG9WbUpIZUdoV2JHUk9UVlpzVjFaWWFGaFNiRnA1V1ZWYWExUnRSbk5YYkZaWFlUSlJNRlpFUms5VFJrcHlXa1pLYVZKdVFuZFdiWFJYVm0xUmVGZHVVbXBTVjFKWFZGWmFkMDFHVm5Sa1J6bFdVbXh3TUZsVldsTldWbHBZWVVWU1ZXSkdjR2hWTUdSWFUwWktkR05GTlZkTlZXd3pWbXhTUzAxSFJYaGFSV2hVWWtkb2IxVnFRbUZXYkZwMFpVaGtUazFYZUZkV01qVnJWVEpLU1ZGcmFGZFNNMmhVVmxSS1JtVnNSbkZXYkdSVFRUSm9iMVpyVWt0U01WbDRWRzVXVm1KRlNsaFZiRkpYVjFaYVIxbDZSbWxOVjFKSVYydGFhMWRIU2taalNFNVdZbFJHVkZwWGVITldiR1J6Vkcxb1YyRXpRWGhXVm1NeFlqRlplRmRZY0doVFJYQllWbXRXWVdWc1duRlNiR1JxVFZkU2VsbFZaSE5XTVZwMVVXeEdWMkV4Y0doWFZtUlNaVlphY2xwR1pGaFNNMmg1VmxkMFYxTXhaRWRWYkdSWVltMVNjMVp0TVRCTk1WbDVUbGQwV0ZKcmJETldiWEJUVjJzeFIxTnNRbGRoYTNCSVdUSjRhMk50VmtkYVIyaG9UVEJLVWxac1VrZGhNVTE0VTFob2FsSlhVbWhWYlhNeFYwWlpkMVpyZEU1aVJuQXdWRlpTUTFack1WWk5WRkpYVm0xb2VsWnNXbXRUUjFaSFYyeHdWMUpXYjNwWFYzQkhWakpPVjFWdVNsVmlSMUpVV1d4b2IwNVdXblJOUkVab1RWWnNORll5TlU5aGJFcEdVMjFvVjJKSFVrOVVWbHBoVjBkTmVtRkdhRk5pUm05NFYxUkNZV0V4VW5OWFdHeG9Va1Z3V0ZsWGRFdGpiRlkyVW10MGFtRjZWbGhYYTFwaFlWWktjMk5HYkZkU2JFcE1XV3BHVDFZeFpISmhSM2hUVFVad1dWWkdaRFJUTVU1WFYyeG9hMUo2Ykc5VVZsWnpUbFpzVm1GRlRsZGlWWEJKV1ZWV1QxbFdTa1pYYldoYVpXdGFNMVZzV2xka1IwNUdUbFprVGxaWGQzcFdiWGhUVXpBeFNGSllhR0ZTVjJoVldXdGtiMkl4Vm5GUmJVWlhZa1p3TVZrd1dtdGhNa3BIWWtST1YwMXFWbEJXUkVwTFVtMU9TV05HYUdoTmJFbDZWMVphWVZReFNuTlVia3BwVW0xU1QxbHRlRXRsVm1SWlkwVmtWMkpXV2xoV1J6VlhWa2RLUjFOdVFsZGlSbkF6VmpGYVlWSXhiRFpTYld4T1ZqRktTVll5ZEdGaE1XUklVMnRhYWxORk5WZFpiRkpIVmtad1dHVklUbGRpUjFKNlZrY3hiMVl5UlhwUldHaFhWbTFSTUZwRVJscGxWazV6WWtaYWFWSXlhRzlXVjNSWFdWWnNWMk5HV21GU1dGSlZWbTF6TVdWc2JGWmFSemxWWVhwR1Yxa3dXbXRXTWtwSVZHcFNWV0V5VWxOYVZscGhZMnh3UjFwR2FGTk5NbWcxVm14a2QxRXhiRmhVYTJSWFlteEtjMVV3WkZOak1XeHlWMjVPVDFadVFsZFpWV1F3VjBaS2NtSkVUbGRpV0VKVVZqSnplRkl4VG5OUmJHUk9ZV3RhU0Zkc1dtRldNazV6WTBWb1UySkhVazlVVnpGdlUyeFplRlZyY0d4U2F6RTBWVEZvYzFVeVJYbFZiVGxXWWxob1RGWnJXbUZqTWtaR1ZHeFNUbFp1UVhkV1JscFRVVEZhY2sxV1drNVdSa3BZV1d0a2IyUnNXWGRYYlhSVVVqQmFTRmxyV25kaFZtUklZVWM1VjJKWVFraFpla3BPWlVkT1JtRkdRbGRpVmtwVlYxZDRiMkl4YkZkYVJsWlNZbFZhYjFSWGRIZFRWbFY1WkVjNVYySlZjRWxhVldSdlZqSktTRlZyT1ZWV2JIQjZWbXBHWVZkWFJrZGhSazVwVW01Qk1WWXhXbGRaVjBWNFZXNVNVMkpyTlZsWmExcGhWMFpzVlZOc1NrNVNiWGhXVlcxek5WVXdNVmRqUkVaWFVqTm9kbGxXV2t0ak1rNUhZa1pvVjAweFNqSldWbEpIVkRGWmVGcElTbUZTYkhCdlZGZDRTMWRHV2tkWGJVWnJUVVJHU0ZadE5WTmhNVW8yWWtaa1ZtSllhSHBVYkZwelZtMUdSbFJzWkdsV1dFSktWMVpXVjFVeFdsaFRiR3hvVTBWd1dGbHJXbmRUUm5CR1YydDBhMUl3TlVkVWJGcHJWR3hhV0dRemNGZGlXR2hVVlhwQmVGTkdTbGxoUjBaVFZqSm9WbGRYZEd0aU1rbDRWbTVHVW1KVldsaFphMXAzVFZacmQxZHRkR2hOYTNCSVdXdFNUMVl3TVhGV2EzaGFZVEZ3VEZwRldsZGtWMHBIWVVkb1RsZEZTalZXYlRGM1V6RktkRlp1VGxOaWExcFpXV3RrVTJJeFVsaGxSWEJPWWtad1NGWXlNVWRYUjBwWFVtcE9WVlpzY0hKV01HUkxWMGRXU1ZSc2NGZFNWbTk2Vm1wR1lXRXhaRWhXYTJoUVZtdHdUMVp0ZEhkVFZscHpXWHBHVkUxWFVrbFZNblJoWVd4T1JrNVdaRnBpUmtwSVZtdGFkMWRIVmtsVWJHUnBVakZLTmxaclkzaGlNVmw1VWxod1VsZEhhRmhXYlRGT1pVWnNjVkpzY0d4U2JWSmFXVEJrYjFaR1NsbFJiR3hYWWxoU1dGZFdaRmRqTVdSMVVteE9hVkl4U25oV1JscHJWVEpXYzJKR1dtRlRSVFZZVkZaYWQwMVdWbGhsUldSWFRXdFdORmt3Wkc5WFJscDBWV3hPWVZac2NHaFpNbmgzVWpGd1IyRkdUazVOYldjeFZtMTRhMDFHV1hoVVdHaGhVbGRTVjFsclpGTlhWbXgwVFZaT2FrMVdjREJVVmxKRFZHc3hWMkpFVmxWaVIxRjNWakJhUzJOdFNrVlViR1JwVjBWS1ZWWnFTbnBsUmtsNFZHNU9VbUpIVW05WlZFNURVMVprVlZOcVVtaE5helV3Vm0xMGExbFdTWGxoUnpsVlZrVktURlpYZUdGak1WWnlXa2RvVGxaVVJUQldWRVp2WWpKR2MxTnNhRlppVjJoWFdXeG9UbVZHV1hkWGJIQnJUVlp3ZVZwRlZURmhWa3AxVVZoa1YxSnNjRlJWVkVaaFkyc3hWMWRyTlZkU2EzQlpWbTB3ZUdJeVZuTlhiazVZWWxoU1ZWVnFSbUZUUmxsNVpVaGtWMDFWY0ZoWmFrNTNWMFpaZWxGcmFGZGhhM0JRVm1wR1YyUldUbk5XYld4VFRWVndWbFl4WkRSaU1rbDRZa1prWVZKc1dsTlpiRlpoWWpGU1YxcEdUbFJTYkd3MVZHeFZOV0ZIU2taalJFSmhWbGRTU0Zac1dtRldNazVIV2taV1YySklRalpXYlhCSFdWWmtXRkpyYUdwU01uaFlWakJXUzFOR1duUmxSM1JQVWpCV05GWlhOVTlYUm1SSVpVYzVWbUV4V2pOV01GcFRWakZrZFZwSGFGTmlSbXQ1VmxjeE1HUXlTa2RUYms1VVlXdGFXRlZ1Y0VkVFJscFZVMnQwVTAxck5VaFphMXB2VmpBd2VGTnRPVmhoTVVwRFZGWmtUbVZHY0VsVGJXaFRUVEpvVlZaR1ZtRmtNa1pIVjI1U1RsTkhhRmRVVmxaelRrWmFXRTVWT1ZoU01IQlhWako0YTFadFNsbGhSRTVWVmxad2VsWnRlR3RqTVZKeldrWmthVk5GU21GV01WcFhWakZWZUZkdVNrNVhSbHB2VldwS2IxbFdjRmhrUjBaT1RWWmFlbFl5ZUd0aE1VbDNUbFZrVldKR2NISldSM2hoVjBkUmVtTkdaR2xYUjJoVlZsaHdRbVZHVGtkVWJHeHBVbXMxYjFSWGVFdFdiR1JZVFZod1RsWnNjRmhaYTJoTFdWWktObUpHYUZwaE1YQXpXbGQ0V21WVk5WaGtSbFpvWld0YVdWZFVRbTlqTVZsM1RWaEdVMkV5YUdGV2FrNXZZVVpyZVdONlJsaFdNSEJJV1ZWa2IxUnNaRVpUYkVwWFRWWndhRmRXV2s1bFZsSjFWV3hXYUUxV2NGcFhWM1JyVlRKSmVGVnNhR3BsYTBwUFZXMHhVMWRzYTNkV2JYUlhUV3R3V0ZZeWVHOVdNVW8yVm14b1YyRXlVa3hWYWtaUFpGWkdjMXBIYkZOaWEwWTJWbTF3UjFsV2JGZFRXR2hwVWtad1ZGbHNaRFJVTVZweFVtdDBWRlpzYkRWYVJXUkhZVVV4V0ZWcmJGWk5ibEpvV1ZkNFQxSnJOVmRhUm5CcFVtdHdTVlp0ZEdGa01XUklWbXRzVldKSFVuQlZha1pMVG14YWNsa3phR2xOVm13MVZXeG9kMVZzWkVoaFJtaFhZbFJHVTFSVlduZFNWa3B6WTBkNFYyRjZWalpYVjNSaFdWZEdWMU5ZYkdoU2VteFlWbXBPVTFkR1pGZFhiazVYVFdzMVNGWXlNVWRWTVdSSFUyeGFWMkpVUmpaVVZtUlhZekpLUjFkdFJsTmxiWGhYVjFab2QxSXhXWGhoTTJSWVlsVmFXRlJYZEhkVFZscElZMFpPVjFZd1ZqVldWM2hQV1ZaYWMyTkhhRnBOYm1nelZXcEdkMUl5UmtkVWF6Vk9ZbGRqZUZadE1UUmhNbEY0VWxob2FWSnRhRlpaVkVwVFYwWnNkR1ZGZEdwTlZsWXpWMnRhVDJGck1WaGxTR3hYVFc1b2NsWkVSbUZrVmtaeldrWndWMVl4UmpOV2FrSmhVMjFSZVZScldtaFNia0pQVlcwMVEwMXNXbkZUYm5Cc1VtczFTVlZ0ZEdGaVJrcDBWVzA1V2xaRldqTlpha1poVjBVeFZWVnRhRTVoZWxWM1ZtMHhNR0V4YkZkVFdHeG9VbnBzVmxaclZrdFVSbHBZWlVkR2FrMVdXbmxYYTJSdlZHeGFWVkpVUWxkV1JWcDJXV3BLUjJNeFRuTmhSbHBwVmpKb1dGZFhlRzlVYlZaSFYxaGtXR0pJUW5KVVZscDNaVlp3UmxaVVJtaFdhM0F4VlZab2ExWXhTbk5qUmxKV1ZrVmFhRmt5YzNoV01XUnlUbFprVTJFelFscFdiVEIzWlVkSmVWWnVUbGhpYkVwUFZteGFkMk14V25SbFIwWnNZa1p3TUZwVmFHdGhSbHAwVld0b1ZrMVhhRE5XTUZwaFl6RmtkR0ZHWkdoaE0wSlZWbGN4ZW1WR1dYbFNhMlJTWWtkU1QxUlZWbmRXYkZsNFdrUkNhVTFWVmpOVWJGWnJWMGRLY21OSFJsVldSWEJVVmxWYVlXUkhWa2xVYXpsVFlrZDNNVlpIZUdGVU1WbDVVMnhhYWxKWGVHRldiRnAzWkd4YWNWTnJaR3BoZWxaWFZERmFWMVl5U2tsUmJUbFhZV3RLY2xaSE1WZGtSa3B5V2tkb1UyRjZWbmRXVnpBeFVXc3hWMWRZYUZoaVIxSmhWbXBDVjA1R1dsaE9WazVXVFd0d2VWUnNXbk5YYlVWNFkwZG9WMDFHY0hwV2JGcFBZekZPY2s1V1RtbFdhM0JhVm0xd1MwMUZNVWhTYmtwT1ZtMVNWVmxYZEdGWFJsWjFZMFZrYTJKR2NGWlZNblF3VlRBeGNrNVZhRnBoTVhCMlZtcEJkMlZYUmtoUFZtUlhaV3RKTUZac1kzaFdNVWw0WTBWc1YySkZOWEJWYkdoRFpERmFkR1ZIUm10TmExcElWakkxVTFSc1RraGhSbVJWVm14VmVGWXdXbHBsVjFaSVQxZG9UbFpYT0hsWFYzUnFUbFphVjFkdVRsaGhhelZXVm14YWQyVnNXblJsUjNScVRWWktlbGRyV210aFZrNUdVMjFHVjAxV2NGaFdha1pXWlVaa2RWTnJOVmhTYkhCMlZsZHdTMkl4YkZkalJtaHJVakJhVDFSV1dtRmxiRmw1WlVkMGFFMVZiRE5VYkZaclZsZEtSMk5JU2xkU00yaG9WakJrVW1WdFRrZGFSMnhZVWpKb1ZsWnNhSGRSYlZaSFZHdGtWV0pIZUhCVmJYTXhZakZTV0dWRmRGZGlSMUpaVkZab2QxUnNXbk5qUm1oYVlUSm9URmRXV2t0T2JVcEhZVVp3YUUxWVFYcFhiR1EwVjIxV1ZrNVdhR3RTYkZwdldsZDBZVmRXWkZWUmJUbHFUVlpzTTFSV2FFZFZNa1Y1WVVkR1YyRnJOWFpaVlZweVpWVXhWazlXVGxkaE0wSTJWMVpXYTJJeFVuTmFSVnBVWWtWd1dGbHNVa2ROTVZZMlVtdDBhMUpzY0hsWlZWcFhZVVV4VjJOR2JGaFdNMUp5VmxSR1lWSXhXblZVYkdocFlsWktlbFp0TUhoVk1XUnpZVE5rVjJKWVVsaFVWM1IzVjBaV2RHTkZPVmRXYkhCNlZqSTFkMWRzV25OalJYUmhWbTFTU0ZWcVJsZGpNazVJWWtaT1RtSlhaRFZXYlRGM1VqRnNXRkpZYUdGU1YyaFlXVlJLYjFWV1duUmtTR1JWVFZad01GcEZhR3RXUmxwelkwaHdXRmRJUWtoV2ExVjRWMFpXY21KR1drNWliRXB2VjFaa05GUXhTbkpPVm1SaFVtNUNjRlZ0ZEhkVFZscDBaRWRHYTAxWFVrbFdiWFJ6VmxkS1NGVnVRbFpoYTFwTVZHMTRZV05zYTNwaFIyeE9WbXhaTUZacVNqQlpWbVJJVW01T2FsSnRhRmhaVkVaaFpWWndWbGR1VG1wV2EzQjZXVEJrTkZVeVNsZFRhbEpYWVd0dk1GVjZTa2RUUms1eVYyMXdVMkpXU2xwV2JURTBVekZTUjFkc1ZsTmhlbXhVVkZaYWQwMVdWblJsUlRsb1ZteHdXRmt3V25kV01rcFZVVmhvVmxaRldsQldha3BMVWpGa2MyRkhhR3hpV0doYVZtdGFZVmxYVVhoVWEyUllWMGQ0YzFWcVFtRlhSbEpZWkVoa1ZGWnNjRWxaTUZwUFZqRlpkMVpxVmxkV00yaFFWMVphWVdNeVRraGhSbkJPWW0xbmVsWlhjRWRrTVVsNVVtdGtWV0Y2Vms5WmJHUnFaVVphZEUxVVVtaE5iRVkwVmxab2IxWXhaRWhsUmxaWFRVZFNkbGt3V2xaa01WcFZVbXhvVTJKWVozZFdSbHBoVkRGa1IxTnVUbFJpUjJoWVZGZHdWMk5zV2tobFJYUnJVakZLUmxaSGVHOWhSVEZYWTBoc1YyRnJTbWhWTWpGU1pWWlNjbGR0YUZOaWEwcFFWbGN3TVZFd01YTlhia1pVWW01Q2MxVnRjekZUUmxwMFRsWmtXRkl3Y0VsV1YzTTFWMjFLVlZKdVdscGhhMXBvV1RGYVIyUkdTbk5hUlRWb1pXeFpNbFl4VWtOV01rbDRWbGhzVkdFeWFGZFphMlJ2Vm14YWRHVkhSazVOVm5CWldsVmtSMkZyTVZkWGJteFhVak5vY2xsVlpGZGpNV1J6WWtaa2FHRXhjREpYVjNCTFVqSk5lRlJ1VG1oU01taFVXbGN4TkZkR1pGZGFSRUpyVFd4S2VsWXlkRmRWTWtwSFkwaEtWVlpzY0ROYVZscDNVbXhhVlZKdGFGZGhNMEY0VmxaYWIyRXhXWGhUYms1cVVteEtWMVpyVm1GaFJtdDVZek5vVjAxWFVubFViRnByVlRKRmVsRnNjRmRpVkVJeldsVmtTbVZXV25WVWJHaHBZa1Z3VUZadGVHRmtNazE0VjI1U2JGSXdXbk5aYTFwM1RVWndWbUZIZEdoU2JIQXdWbGQwYjFack1WaGhSRTVYVFVad2FGbDZSbXRrUjBaSFdrZG9hRTB3U2xaV2JHTjRaVzFXUjFkWWJGTmhNbEpUV1d0a1UxUXhVbFpXYm1SWFlrWnNORmRyVWtOaFZURldWbXBPVldKR1duSldNR1JMWTIxT1NGSnNWbGRTV0VKVlZteFdZVmxYVGxkU2JrNWhVbFJzV0ZscldscE5WbVJ5Vm0xMFRsSXdXa2xWTW5SaFlXeEtkR1ZIUmxkaVJuQXpXa2Q0V21WVk1WWmtSazVPVmxSV05WWnJaRFJXTVZsNVUydHNVbUpVYkZoWlYzUkxZMnhhU0UxV1pHdFNhM0I1VjJ0a2IxVXlSalpXYm1SWFZucEJlRlZYYzNoak1XUlpZVVpvYVZJeFNtaFdiWEJEVmpBMVIxZHNhRTlXVkd4WlZXMHhVMU5XY0ZaWmVsWlhZbFZXTkZZeWNFOVdNREZIWTBaU1YyRnJXbkphUmxwM1UwZEdSMVJ0YkZOaVdGRXhWbTE0YW1WRk1VaFZXR3hVWVRKU1ZWbHRjekZXVm14WVpFZEdXRkp0ZUhwWlZXTTFWbFpLZEdWR2FGZE5ibEYzV1ZkemVHTnJOVlpoUm5Cb1RWaENNbFp0Y0VKa01sWkhWRzVHVkdKSFVsaFphMVozVTFaa1YxVnJaRmhpVmxwSVdUQldjMVpIU2xaWGJGSmFZVEpvUkZwSGVHRlNNWEJGVld4U1RsWXhTa2xXYWtvd1lURmtTRk5zV2xoaWEzQldWbXhhUzFOR1ZYZFhiVVpyVWxSV1dGWkhNVzlVYkZwWVQwaHNXRll6VW1oWlZFWmhaRVpPYzJKSGFGTlNWRlpYVm0xNFlXUXlSa2RYV0dSaFVsUnNVRmxyV25kbGJHUnlWbFJHYUZKVVJscFZWbEpIVmpKS1dWRnJlRlZXVmxWNFZXcEdhMlJXVG5KT1ZtaFRZa2hDTWxac1VrTldNbEY0V2tWa2FWSnRhSEpWYWtKaFlqRldkRTVWVGxOTlZtdzFXa1ZTUTJGRk1WWmlSRTVWWWtaYWNsWnNaRXRTTWs1SlUyeGtVMDB5YUc5V2FrSnJWVzFXZEZSclpHRlNNbmhaVldwS2IxWnNXbk5oU0dSU1lsWmFTRlpIZEd0V1IwcElaVWM1Vm1GclNtaFdhMXBoWTFaT2RFOVdaR2xTTVVwYVYydFdhMDFIUmxaTldFcHBVa1pLV0Zsc1VsZFRSbHBZVFZWMFYySkhVbnBaVlZwM1lVVXhXVkZZY0ZkU2JIQm9XVEl4VW1WR2NFbFZiWFJUVFcxb1VGZFdVazlSTVU1WFdrWm9hMUpyTlZaVVZscHpUVEZTVjJGRlpGZE5hMVkyV1ZWa1IxZHNXa1pYYWs1WFVsWndNMVZ0ZUd0ak1YQklaRVprVGxORlNrdFdiR040VGtaUmVGZFlaRTVXYkhCWlZqQm9RMWRHYkhOaFJ6bFhVbXhaTWxWdGREQmhNVXB6WTBSR1YxSXphRkJaVm1SR1pVZE9SMk5HYUZkTk1VcDVWbXhTUzFReFNYaFhibFpUWWtVMWIxUldhRU5sVmxwSFYyMUdhMDFzV2xoV01uaHZZVEZLUmxOc1pGVldWa3BJVmpCYWMyTnNWbk5VYkdST1ZsZDNNbGRXVm05a01XUnpWMWh3YUZKWWFHaFZiWGgzVTBacmVXTjZWbGROVm5CNlYydGtOR0ZGTVZoUFZGWlhZbFJHTTFWcVJuTlhSa3BaWVVab1dGSXlhRmxYVnpFd1pESkdSMVp1UmxWaVJUVldWRlprTkZac1ZuUk9WM1JYVW14d2Vsa3dhRzlXYXpGMVVXeFNWMkZyUmpSV2FrWmhZMVphYzFkck5XbGlSWEExVmpGYWEwNUdVWGhUYmtwUFZtMVNhRlZ0TlVOalJsWjBaRWhrVkZac2NEQmFSV1JIVm1zeFYySkVVbGhoTW1oUVZqQmtTMWRYUmtkaFJsWlhWbXR3VkZkc1dtRlpWbVJHVFZaV1ZtSlhlRTlXYlhoYVRWWmFXR1ZIT1d0TlZsb3dWVEo0WVZkSFNraGhSbWhhWWtaS1NGWkVSbmRXYkdSMVZHMXdWMkV6UWpaWFZFSnJUa1pWZVZOc1pGUmlWVnBaVm10V1MyTnNiSEZTYlVaVFRWVTFlbGxyV2t0aFZrbDRVMnh3VjJKVVJUQlZla1pUVWpGa2MxWnNUbWhsYlhoVlZrWmFZV1F3TVZkV2JsSnNVbFJzYjFadGVIZFhSbXQzVjI1a1YwMXJjRlpWVm1odlZteGFSbGRzUWxkaGEzQk1WV3BHYTJNeVJraGhSM2hwVjBkb1lWWnRkR0ZaVm14WVZWaG9WV0V5VWxsV01HUTBZekZXY1ZGdFJsaFNiRXBaV2tWb2ExWkdXbk5qUld4YVRVWndVRlpxUmxwa01WcHhWbXhrVjAweWFGRldNVnBoV1ZkTmVWUnJhR2hTYmtKUFdXMHhibVZzV2xoalJXUnJUVlUxU1ZVeWRHdFdWMFkyVm14b1YwMUdXa2hVYkZwaFpFVXhWVlZ0YUdobGExcGFWbXhhYjJNeFdsZGFSV2hzVW14YVdGUlZaRk5rYkZweFVtNU9hbUpJUWtoV1IzaHZWakpLV1ZvelpGZFNiSEJvVmtSS1IyTnJNVmRoUjNoVVVqTm9XVlpHWkhkV01WWkhWMnRXVTJKVlduSlZha1pMVW14YVNHVkhkR2hXYkhCSFZtMXdUMVl5U2xsUmEwNWhWbFp3VEZacVJrOWtWazV6WVVkc1UySnJTak5XYlhCRFZqRk5lRlJzWkZoaWExcFZXVmQ0UzFsV1duUk5WazVVVm14YU1GcEZaRWRoVmtweVkwUkNWMVl6VFRGV01qRkxWbFpLZFZkc2NHaGhNWEJ2VjFSR1lWSXlVa2RUYms1aFVsUldiMXBYZUZwTmJGbDRWV3RPVjAxcmJEUldiR2h6VmtkRmVXRkdaRnBYU0VKNlZtMTRZV1JYVGtaYVIzUnBVbXhaTVZkc1ZtRmtNa3BIVTI1T1dHSnRlR0ZVVldSU1RVWmFWVk5yWkU5aVJYQldWVmQ0YTFZeFNsZGpSRXBZVmpOQ1RGVnFTazVsUmxKMVZHMW9VMDF0YUZaV1YzaFhaREZrUjFwR2FHeFNhelZVVkZkNFMyVnNXWGxPVlhSWVVqQndWMVl5TlVkV1ZsbDZWVzFvVm1GcldtaFZNR1JYVWpGU2MxWnRiRk5pYTBZMFZteGFZV0l5UlhoWFdHaFVZbXMxY1ZWdGVFdFdNVnB5Vm0xR2FGSnRkRFZaZWs1dlZqQXhXRlZ1YkZWaVJuQnlWbFJLUm1Wc1JuTmpSbVJPVmpGR00xZFdVa3RUYlZaWFZtNVdWV0pIYUZsVmFrWkxWMnhrV0dWSE9WWk5WbkJZVm0wMVIxVnRTbFpYYkZaV1lsUkZNRnBXV2xwbFZUVllaRWRvVTJKSVFYZFdiR1F3WXpGa2MxZHNhRlZXUlZwWVdWZDBkMVJHV25OWGEzUlhWbXRhZWxrd1pEUmhSVEIzVTJ4S1YwMVhhRE5WZWtaU1pVWk9kVlZzVG1oTmJFcFVWMWQwYTFVeFVYaFZiRnBYWW0xU1dGbHJXbk5PUm1SeVZXdE9hRlpVUmxkV2JYQlBWbGRLUjFkdVNsZE5SMUpNV1RJeFQxTkdTbk5XYkdSVFYwVktWbFp0ZUZkWlZteFlWR3hrVTJKck5XaFZiRkp6VjBac2NsZHNjRTVXYlZKNVZtMHhNRlJzU1hkWGEyeFdUVzVTYUZsWGVFdGtSMVpJVW14a2FWSnVRWHBYYTJRMFYyMVdWazFXV210U2F6VlBWbXhTVjA1V1duSmFSRkpYVFZac05WVXlkSE5WYlVwVllrWm9XbFl6VWt4Wk1uaGhVMFV4VjFwSGRGTmhNMEkxVmpKMGEySXhWWGxTYWxwWFltMVNXRlp1Y0VOTk1WSnpWbFJHVTAxWFVscFpWVnBoWVVVeFJWWnRhRmRpV0VKRVZtcEJNVkl4WkhOaFJUbFhZWHBXV0ZaR1pEQmtNbFpYVlc1T1dHSnJOVmxaYTJSVFUyeFdXR1JIT1ZkTlJFWklXVEJvZDFZd01VaFZiRkpXWWxSR1ZGVXdaRTlUUjBwSFZHMXNVMDB4UlhoV2JURTBZVzFXU0ZadVNrOVdiVkpZVmpCa1UxUXhXblJOVms1cVZteGFlVlp0TVVkWFJrcHpZMGhvVjFKNlFURldiWGhMWkVkV1IyRkdaRTVpYkVsNlYxZDBZVk15VG5KT1ZsWlRZa2RTVDFsdE1XOU5iRnAwWTBWMFZFMVZjREJXUjNSaFlWWktkR0ZIT1ZWV2JGb3pWVEZhWVdOc1ZuSmFSbWhwVm14d1NWZFVRbGRqTVZwSVUyeG9hRkpzU2xaV2ExWmhWRVphYzFkdFJsTk5WbkF3VlcweE1GUnRSWGhqUld4WFlXdHJlRlpVUmxOak1YQkdZa1pLYUdWdGVGbFhWM2h2VkcxV1IxZFlaRmhpU0VKelZtcEdZVk5XVVhoYVJ6bFZZa1p3V1ZRd2FITlhSbGw2Vlc1R1ZXSkdjR2hXYWtaclpGWlNjMkZIYUdobGJGcFlWbTB4TkZsWFVYbFNhMlJZVjBkU1dGWnJWbUZYUm14eVYydDBiR0pIVW5sV2JGSkhZVVpLVlZGcVRsWk5ibEYzVm1wQmVGWXlUa2RoUm1Sb1lURndXRmRzVm1GaE1sSlhWRzVLVDFadFVuQldiWFIzVGtaYWMxcElaRlJOYTJ3MFdXdGFhMVp0U2toVmJHeGFZbFJHVkZacVJsZGtSVEZWVVdzNVUySkhkekZYYkZaclRVZEdTRkpxV2xOaVIzaFlWbTV3VjJWc1duTmFSWFJUVFdzMVNsVXllR3RWTURCNVlVYzVWMkZyU25KV1Z6RlhaRVpTY2xwSFJsTk5ibWhhVmxkd1MySXhXbk5YYms1b1UwZFNVMWxzV21GVFJscElaRWQwVjFZd2NFbGFWV2hEVm0xS1dWUllhRnBoYTFwVVZqQmtWMUp0VWtkYVIyeFRUVlZ3WVZacldtRmlNbEY0Vlc1T1dHSnJOWEZWYlRGdldWWnNWVk50T1ZWU2JWSllWakowTUZReVNsWmpSV2hhVmxad00xbFZWWGhYVmtaWlkwWmtVMkpHY0c5WGExSkhXVmRTUjFOdVNtaFNNMUpVV1d0YWQyUnNaSE5hUkVKYVZtMVNXRmRyV205aE1VcHlUbFphVlZac2NIcFVWRVpUVmpKR1JscEdaRTVoTVZreVYxWldhMUl4WkhOWGExcFlZV3MxV0ZWc1duZE5NVlowWlVkMGFrMVlRa2xhUlZwclZHeE9SbE5yZEZkaVIwNDBWR3RhVW1WR1pGbGFSVFZYWWtoQ2QxWlhkR0ZrTVdSSFZXeGtXR0p0VW05VmJURlRWMFpaZVU1Vk9WaFNhM0I2VlRKd1IxWXhXWHBoUm1oYVZsWldORll4V2tka1ZuQkhXa1prYkdFd2EzZFdiWGhUVXpGUmVGTllhRmhpYkZwVVdXdFZNV0l4VWxkaFJVNXNWbXh3U0ZZeU1UQldhekZZVld0b1YwMXVhSFpaVkVaTFVteE9jMXBHVmxkV2EzQkpWbXBDWVdNeVRuTldiazVWWWtkU1QxWnNZelJsVmxwMFRWUlNhVTFXYkRWVk1uaFhWVEpGZW1GR1pGcGlSMmgyVmxWYWMwNXNUbkphUms1T1ZqRkpkMWRYZEdGVU1rWkdUVWhrVkdKVldsaFpiRkpIVFRGV2NWSnVUbGROYTNCSVYydGFVMWRHU1hsaFNHUlhWak5TYUZwRVJtRlNNa3BKVkcxR1UxSnJjRmRXUmxwaFpESldSMVp1VW10U1JVcFlWVzE0ZDAxR1dsaGxTRTVhVm10d1dWWkdVa2RXTVZwR1VtcFNWMkZyY0ZCVmJURkxVakZrZEdKR1RrNWlWMlExVm1wR1lXRXdOVWRWV0doVVltdHdVRlp0TVZOaFJsWjBUbFZPYWxKc1dqQmFSV2hyVmtaYWMyTkVRbUZTVjFKSVZqQmtTMVl4WkhOaVJtUnBWMFpLTWxkV1VrZFRiVlp6VW01V1VtSkdjSEJXYTFwaFVsWmFkR05GWkZwV2JWSkhWRlphVjFadFNsaGhSVGxYWWxoU00xUnRlR0ZqVms1VlVteGtUbFpzYjNkV1Z6QXhWREpHYzFOdVVteFNiV2hoVm10V1lXRkdXa1pYYms1WFlrZFNNRlZ0TVhkV01rVjZVVmhrV0dFeFdtaFdSRVpUWXpGa1dXRkdVbWxXVm5CYVZtMTBWMU15UmtkYVJtUmhVbGRTV1ZWdGRIZFhiR3QzVjJ0MGFGWnJiRFpaVlZwelYwWlplbUZJV2xkV1JWcHlWV3BHZDFJeGNFaFNiRTVwVm10d05GWnJXbUZoTVZWM1RWWmtWMkpzU25OVmJGSnpZakZhZEdSSVRrOVNiRlkxVkd4ak5WWXdNVlpqU0hCYVRVZG9URlpxUm1GU2JVNUhZVVp3YkdFelFrMVdWM0JIWVRKU1IxTnVUbFppUlRWWVZXMTRkMWxXV25Sa1IwWmFWbTE0V1ZaV2FHdFViRnAwVld4b1dtRXlVblpaZWtaWFl6RndSMVJzYUZOaVJYQmFWMnRXWVdFeFVYaFRibEpyVWtVMVdWbFVTazVOVmxsM1YydDBhazFyTlVaVlYzaHJWakF3ZVdGR1JsZE5WbkJvVjFaa1RtVldVbkpoUjJoVFltdEtVRmRYTUhoaWJWWnpWMnhvYWxKWFVuSlVWbFp6VGxaV2RHUkhkRmRXTUZreVZtMXpOVmR0U2toVmJrWmhWbFp3YUZwRlZYaFdWbFowWVVVMVUxSldjRXBXYlhCSFlqSkplRmRzWkdGU1YyaHZWV3BLYjFZeGJISmFSazVYVW14c00xWXlOVTloTVVsNFYydGtZVkpYVWpOWlZscExZekZrV1dOR1pFNWliRXB2Vm10U1MxSXlUbkpOVm1Sb1VqTm9WVlZxVG05WFZscEhXa2hrVjAxV1draFdNblJYVlRKS1ZsZHVSbFZXYkZWNFZGWmFjbVF4WkhSUFZtaFRZWHBXU0ZaVVNqUmpNVmw1VTJ4c1VtRXdOV2hXYkZwM1ZFWmFjVkpyT1d0V2JFb3dWVzE0VDJGWFJYZGpSRXBYWVRGd2FGWnFTbEpsVms1WllVWm9hV0V4Y0ZaWFZtUTBVekZzVjFkdVVrNVdhelZWVm0xNFlVMUdjRVpaZWxab1VtdHdlVmt3VWtOV01WbzJVVlJHVjAxdWFHaFZiWE14Vm14V2MxZHJOVmRpYTBvMVZtMHhORmxXVVhoYVJtaFRZVEpTV0ZsWWNGZFhSbGwzVm10a1RrMVdjREJVVldodlZHeEpkMVpxVWxoaE1WcDJWbFJLUjJNeVRrZGhSbkJvVFd4S01sWXhXbUZqTWsxNVVtdGtWV0pHV2xSWmExcGFUVlprYzFadFJtdE5hM0JJVmpGb2IxWkhSWGxoUm14YVZrVmFNMWt5ZUhOV2JIQkhXa2R3VGxZeFNqWlhWM1JoWVRKR1NGSllhR3BTUlhCWlZtcE9RMVJHVm5GVGF6VnNVbXhLTVZaSE1XOVZNa3BKVVc1a1YySllRa3haYWtaclVqRndSMkZIZUZObGJYaFhWMWQ0WVZsV1RrZFhXR2hvVWpOU1dWVnFRbmRUYkZaWVRsVjBWMVpzY0hwWk1GSlBXVlphYzJORVRsWmlXR2hvVm14YVMyUkhSa2RhUjJoT1RVVlpNRlp0ZUdGWlYwbDVVbGhvV0ZkSGFGVlpiWE14WTFaV2RHVkZkRmROVm5CNVZtMHhSMkZHU25Sa1JGWmFaV3MxZGxacVFYaFhSbFoxWWtaV2FWSnVRbmxXYkZKTFVtMVdjMUp1VG1wU2JWSndWbXRXU21Wc1pITldiWFJVWWxaYVdGWXlOVmRXVjBwSVlVaENXbGRJUWxoV01uaHJWMGRXU0U5V1drNVdia0paVm0wd01WSXhWWGxUYkZwWVlrWmFWMWxzYUc5bGJGSnpWMjVrVjJKVldrbGFSVnByVkd4S1JsZHNhRmhXUlVwb1dXcEdhMlJHU25WVGF6bFhVbFJXV1ZaR1ZtRmtNV3hYWTBab2JGSlhVbkZaYkZaaFUwWmtjbHBIT1doU1ZFSXpWVEo0UzFZeVNsVlNhazVXWVd0YVlWcFdXbGRqTVhCSFZtMXNhR1ZzV2xwV01XUTBZVEExUjFkclpGWmlSMUpZV1cweFUxZEdiSEpYYms1UFVtMVNlVlpYZUU5aFJscFZVbTVzV21FeFNsQldiR1JMVWpKT1NWTnNaRTVTTVVwTlYxaHdSMVF5VG5KUFZtUllZbGRvVDFadE5VTmtiRmw0V2toa1UwMVdWalJXTVdodldWWk9SMWRzV2xwWFNFSjZWbXRhYzJOc2NFVlVhelZYWWtoQ1NsZHNWbUZaVmxGNFYxaGtXR0V5ZUZkVVZ6VlRZVVpzV0dWRmRGaFNiRnA2VjJ0YVYxWXdNSGRUYTJ4WVlUSlJNRmRXWkU5V01WSjFVMjEwVTJKRmNGVlhWM1JoWkRBMVYxZHJWbE5pVlZwWVZGWmFjMDVXVlhsa1NFNVdZbFZ3VmxscldtOVhiRmw2Vld0NFdrMXVhR2hWTUZWNFZqRndTR1JHVG1oTk1Fa3hWbXBLTUdFeVNYaFdXR3hUWVd4d1dGbHRNVk5YUmxwMVkwVktiRkpzV2xsWmVrNXZZV3N4V0ZWc2NGcFdWbkIyV1ZaYVNtVkdUblJoUm1ScFYwVktSVlp0Y0VKTlZrbDRXa2hPYUZKVWJGaFdhMlEwVjJ4YVdFMUlhRlpOVlRWWVdUQmFZVmR0Vm5OWGJHaGFZa1phV0ZScldscGxWMDVHVDFaa1RsSkZXa2xYVkVKaFZURlplVkp1U2xoaWEzQm9WVzE0ZDAweFZYZGFSV1JUVFZaS01GbHJXazloVm1SSFVsaG9WMkpVUlRCWlZ6RlhVbXN4Vm1GR1dsaFNNMmhXVjFaU1MxVXhXbGRpU0ZKcVpXdGFXRlp0TVRSWFZuQkdXa1ZrV0ZKcmNEQmFWV2gzVjJ4YVdGUlVSbGRpUm5CTVdrVmtWMUl5UmtkYVJUVnBZa1ZaZWxZeFdtdGxiVlpJVkc1S1QxWnNjRzlWYlRWRFlqRlNWMkZGVGs1aVJuQXdXVEJXUzJFd01YTlhhMmhYVW5wV1NGWnJaRXRUUmxaellVWndhRTFXYjNwV1ZFWmhZVEZaZUZadVNtRlNiV2h3Vm0xNGQxTldaRlZSYkdScVRWWndTVlV5ZUdGWFIwcEhVMjFHV2xaRmNIWlZhMXAzVTBkV1NGSnNUazVYUlVwSFZteGtORlV4VW5OWFdHaFVZVEo0V0ZsWGRIWmtNV3hWVW0xMFZGSnJOWHBXTW5odllWZEZlbEZzWkZkaVdHaG9WWHBHVDFJeFdsbGFSbWhwVmxad2VWWlhlRk5XTVdSSFYydG9UbFo2YkZaWmExcDNWMVpSZDJGSVRsaFNiR3cyVmxjeGIxZHNXa1pYYldoaFVsWndVRmw2U2t0VFIwWkhWR3hPVjFKc2NGbFdiVEI0VGtac1dGVlliRmRpYXpWWldXMTRTMk14Vm5GVWJFNXFWbXhLV0ZZeWREQmlSMHBJWlVaa1dHRXlhRkJXYWtGNFYwWldjbHBHV2s1aWJFbDZWbTF3UW1WR1dYaFVia3BXWWtkU2IxbFVRbGRPUmxwWVkwVmthRTFzU2xoV1J6VkxWREZhZEdGR1VscGhNbWhFVkZkNFlXTXhWbkpVYkdST1lrVlpNRll5ZEZkaE1rWlhVMjVTYUZORmNGZFpWM1JMWVVac2NWSnNaR3RTVkZaWFZrZDRUMVJzV25Sa2VrWllZVEZhVkZWVVNrZFNhekZYVjIxc1UxSlVWbGRYVjNSaFdWZE9jMWR1VG1GU1dGSlVWRmR6TVZOc1ZYbGxSM1JXVFVSQ05WbFZZelZXTWtaeVUyNUtWMVo2UmxoYVJWcFRZMnh3U0ZKc1RrNWliV2hoVm14a2QxTXlTWGhYYms1WVltczFiMVV3WkZOVk1XeHpWMjFHVkZKc2NFbGFSV1F3VmpGWmQyTkZiR0ZXVjJoRVZtMHhTMWRXVWxsaFJuQm9ZVEZ3VlZacVFtdFdNVXAwVld0a1lWSXllRlJVVmxaM1dWWmFjbGR0Um1sTmJFWTBWbGMxVDFkSFNuSk9XRVpXWWxSR2RsZFdXbk5XVms1MFQxWldVMkpXU2xsV2Frb3dUVVpSZVZOc1dtcFNWMmhoVm14YWQwMHhiRlpXV0doWVZtdGFXbGt3V205aFZrbDRVbGhrVjJGcmJEUldha1poWTJzMVYxcEhhRk5OTVVwVlYxZDBZV1F5VW5OYVNFNWhVa1ZLWVZadE1WTlhSbVJ5VjJ4a1ZtSlZjRlpaYTJoSFZsWmFjMk5JY0ZWV1JWcFVWbXBLUjFKc2NFZFhhelZvVFZacmVGWXhXbGRoTVVsNFYxaHNVMkpyY0ZCV01GcDNXVlphYzFkdVpHeFdia0pZVjJ0Vk5WUXlTa1pqU0hCYVZsWndjbFpIZUU5U2JFNXlZMFprVGxadVFsbFhWbEpMVTIxV1IxWnVWbFZpVlZwVVZtMDFRMVpzWkZoa1JtUnJUVmRTU0ZaWGVHdFhSMHAwVlcwNVZtSlVSbFJXTUZwYVpWZE9ObEp0YkZOaVNFSTJWbFJLZDFJeFdYaFhXSEJvVW0xb1lWWnNXbGRPUmxweFUyczVVMDFyTlVoWlZWcHJWR3N4Vm1ORVZsZGlXR2hVVlhwR1VtVkdUbGxoUm1ocFlrWndWVmRYZEZka01XUkhWbTVPVjJKdFVsZFZiWGgzVjFaU1ZtRkhPVmRoZWtaWlZsYzFkMWRzV2taT1dFcFhZV3R3VEZZeFdsZGpNa1pIVm14a1RrMVZiRFpXYlhCRFdWWlplVlZyYUZWaE1YQlJWbTB4VTFkR2JISmhSVTVQWWtad2VGVXhVa2RoTURGWVZXNXdWMDF1YUhKWlYzaExWMWRHU0ZKc1ZsZGxiRnBRVjJ4V1lWZHRVWGhYYkZaWFlrZFNUMWxZY0ZkVGJHUlhWbXhhVGxZd1dsaFdNV2h6WVVaS1dGVnNhRnBpUmtwSVZGUkdWMk5XU25WVWJHaFRZVE5DWVZkV1ZtRmlNV1JIVTFoc2FGTkhhRmhXYWs1dllVWmtWMWRzV214U01IQktWa2N4YjFVeVJqWldibWhYVm5wRk1GcEVRWGhTTWs1R1YyeG9hV0pXU2xkWFYzUlhaREpXYzJFelpHaFNlbXhZV1Zod1IwMVdWbGhsUms1WFRXdGFlVlZ0Y0ZOV01rWnlWMjFvV2sxV2NHaFpla1pyWTJzMVdHSkhiRk5YUlVWNFZtMXdSMWxYUlhkT1ZXUldWMGRvVlZsdGRIZFZSbHAwVFZaT2FGSnNXakJVYkZaUFlXeEtjMWRxUW1GU1YyaHlWbXRhWVdNeVRrVlJiVVpUVmpGS1NWWnRNWHBsUmxsNVUydFdWbUpIYUc5VVZ6RnZWVlphY1ZGdGRGUk5WMUpaVlcxMGEyRkdTbk5YYkdoWFlsaFNNMVpyV210ak1XUjBVbXh3VjJKV1NraFdSbHBoVmpGYWRGTnNhR3hTVkd4WVdXeG9iMWxXVWxkWGJVWllVakZhU1ZReFpEQlViRnB6WWpOa1YxWkZiekJYVmxwclUwWk9jbUZIYUZOaVYyaG9WMWQwWVZNeFRrZFhiRlpUWWtVMVdGbHJaRk5OVmxwSVkzcFdhRlpyY0ZwVlZtaHJWMGRGZUZkdGFGZFNSVnBVV1hwR2ExZFhSa2RWYkdoVFRXMW9XbFl4WkRCaE1WWnlUVlZrWVZKdFVsbFphMmhEWXpGV2RHTjZSbXhpUm13MVZGWm9hMVpyTVhOWGFrSmhWbFp3ZWxacVNrdFhWa1p6VVd4a1YxSldjSGxXVjNCSFpERkplR05GWkdoU01uaHZXbGQ0WVZkc1duSlhiWFJzWVhwR1dGWkhkR3RYUm1SSVpVaE9WbUp1UW5wWmFrWmhaRVV4VjFSc1VsTmlSbGt4VmtkNGIxUXhXWGROV0VwcVVteHdWMWxyWkc5amJHUlhWMnQwVTJKVk5VaFpWVnAzWWtkRmVHTkliRmhoTVhCb1ZtcEtUMk5yTlZkYVIyaFRZWHBXV1ZaWE1UUmtNV3hYVjI1U2ExSXdXbUZXYlhoelRsWmFSMkZIZEZWTlYxSkhWR3hvUTFadFNsbGhSRTVYWVd0YWVsbDZSbUZrUmtwellVWk9hVkpZUWxsV2JYaHJUVWRGZUZwRlpGaGlhelZ4VlcweGIxbFdXbk5hUmtwclRWWnNNMVl5ZERCaGF6RnlUbFZhVmxZemFISldha0YzWlZkR1IxSnNaRTVXYmtKdlZqRmFhMVJ0VmxkVmJrcG9VakpvVkZsdGRFdFZSbVJZVFVob2FXSldXbnBXTW5odllXeEtXRlZ1U2xWV2JGVjRWVEZhVm1WWFVraFBWMmhYWVROQ05WWkhlR0ZqTVZwMFUydGtXR0ZyTlZoV2ExWmhZVVp3UmxaWWFGUldia0pKV2xWYVQxWXhTbk5qUlhSWFlrZFJNRmxxU2twbFJtUlpZVWRHVTFZeWFIWldWekI0VGtaa1IxVnNXbUZTYXpWeVdXdGFkMlZHVm5ST1ZUbG9ZbFZ3U2xWWGRITldWVEZZVldwT1dsWnNjRXhaZWtaclYxZE9SMXBGTldsaVJYQjJWbTEwVTFJeVJYaFRXR2hWWW14YVZsbHJXa3RqUmxaeFUyMDVXRlpzY0VoWGEyaHJWakF4Y2s1WWNGZE5ibEoyV1d0YVMxZFdWblZUYkZwb1lURndUVlpYTVRSWlZrNUlWbXRvVUZZeWFGUldhMVpoVjFaa1ZWRnRPV3BOVm13MVZXMDFTMVpIU2xoaFJtUlZWak5DU0ZaVVJuZFdNV1J6Vkcxd2FWSXhTWGRYVmxaaFZESkdXRkpZWkdwU2ExcFlXV3RrVDAweFVsZFhhMXByVFVSR1dsWkhlRzloVjBWNFkwWmFXRlo2UVhoVlZFcE9aVVphZFZWdGNHeGhNWEJXVm0weE5GbFZNVWRqUlZwaFVsZFNiMVp0ZEhkbFZtdDNWV3RPVjAxV2J6SlZWbEpIVmpBeGRXRkhhRlppV0doeVdURmFVMk15VGtoaFIyaE9WMFZLTWxadE1YZFJNVnAwVm10a1dHSkhVbGhaYlhoTFlqRldjMVZzWkdsTldFSlpXbFZhYTFSck1WZGpSRUpWVmxkb2RsWkhlRXBrTVZweFZXeHdhRTFZUW5sV2JYUnJVekZKZUZwSVRtaFNia0p2VkZkNFMwMXNXWGhYYlVacVRXc3hOVlZ0ZEd0V1YwcEhWMnhTV21FeGNHRlVWbHByWXpGYWRGSnRkRTVoTTBKSlZsUkpNVlF4WkVoVGJsSnNVakJhVmxac1pGTlZNVkpXVjIxR1YxWnJOWGxYYTFVMVlWWktXVkZzWkZkV2JWRXdXVlJHV21WR1RuTmFSM0JUVWxoQ1dsWnRjRTlSTVZKSFZtNUdWR0Y2Vm5OVmJYaExUVlphU0UxWE9WWk5SRVl3V1ZWYVlWWXhXWHBoUm1oaFVrVmFjbFZxUm5kU01rWklaVVpPYUdWc1dsWldhMXByVGtaTmVWWnVUbGhYUjNoUVZteG9VMWRXVm5GUmJtUlhUVlpzTlZSc1ZtdFdNVnB6WWtSYVYxWjZSblpXYlRGSFkyeGtkR0ZHV2s1U01VcFpWbGR3UjFVeVRYaFhibEpwVW1zMWNGbFVRbHBOUmxwMFpVZEdXbFl3YkRWVmJHaHZWMFprU0dGR1ZscGlXRTE0V1RGYVYyUkhWa1prUm1ST1ZtNUNOVlp0TUhoU01rWkhVMjVTYTFKR1dtRmFWM014Wkd4YWNWRllhRmhTYkZwNFZWZDRkMkZGTVZsUmJFWlhZa1pLVEZWNlJrOVdNVXAxVkcxc1UySldTbEJXYlhCSFVqQXdlRnBHWkZaaE0xSlZXV3hhWVZkR1duUk9WbVJYVmpCd1NWbFZXbk5XYlVaeVYydDRWMDF1YUhKV01HUlhVMFU1VjFkck5WZGlhMHBhVm0wd2QwMVdTWGhXV0d4VVlrWndXVmxyV21GV01XeHpZVWM1YkdKR1NucFdNalZyVmpKS1ZsZHJiR0ZTVm5CeVZrZDRTMUpzWkhOaFJtaFhVbFZ3YjFkWGNFZGhNbEpIVTI1V1ZHRjZiRmhWYkZKWFYxWmFSMVp0Um10TmExcElXV3RTWVZVeVNsbFZia3BXWVd0S2FGVXdXbXRqYkhCSVQxZG9VMVpGU1hwV1ZFbzBVekZaZVZOc1ZsTmhhelZYV1ZkMFlWWXhjRmRYYkdScVRWaENTRmRyWkhOaFIxWnpWMnhXVjAxWFVYZFpWRVpXWlZaU2NscEdhR2xpUlhCNVZsUkNhMVV4WkVkaVNFcFlZbXMxVUZWdE1WTmxWbHBZWkVVNVYwMUVSa1pWYlRWM1ZtMUtXVkZzVWxkTlIxSkhXbFprUjFJeFJuTmFSVFZUVFZWd1NWWXllR0ZoTVVsNFZHeGtWbUpyTlZsWmJHUnZZakZ3V0dWSFJsTmlSbkF3V2xWYWExZHNXblJsUm14WFZqTlNkbFpxU2tabFYxWkhWMnh3V0ZORlNqWldiWFJoWXpKT2MyTkZWbFZoZWxaWVdXdG9RMU5zWkhOV2JYUlRUVlp3VjFSV1dtdGhWa3BIVjJ4a1ZWWjZWblpaVlZwelYwZFdSbVJHYUZOTlZuQktWbGN4TkdFeVJsZFRibFpTVjBoQ1dWbFVTbEpOUm1SWFdrVTVWMDFXU2pGVk1qRkhWVEF3ZDFOdVdsaGlSMUV3VjFaYWExSXhaSEpXYkU1cFZsWndXVlpHV21Gak1EVlhWbGhzYTFORk5WZFpiRlozVm14c2NsZHRPVmhpUm13MlZsZDBORmRyTVhWaFIyaFdUVVpXTkZacVJuZFRSMUpIVkcxb1RrMUZhM2hXYlhCTFRVZEZlVk5ZYUZkWFIzaFVXVmQ0ZDFkR2JIUk5WazVZVW14d01Wa3dWazlVYXpGWFUyNXdWMkpHU2toV1ZFRjRWMFpXYzJOR2NGZFdia0p2VjFaV1ZtVkdTbGRYYmxKb1VtMVNjRll3Vmt0U1ZscDBZMFZLVGxacmJEUlhhMmhQWVVaS1ZXSkdhRmRoTWxFd1ZqSjRZVmRGTVVsaFJscE9WbFJXV1ZkVVFtRlpWbVIwVm01T1dHSkhhR0ZaYTFwaFYwWlNjbGRzY0d4V01EVkhWREZhYTFSc1NrWlhhMnhZVmtWS2RscEVSbHBrTURGV1lVWmFhVkpyY0ZoWFYzaFRVakZhUjFaWVpHRlNWR3hWVldwQ2QxTkdXa2hOV0U1V1RVUkNORlZzYUc5V01rcFZVbFJDV2xaNlJsTmFWbHBoWTJ4a2NrNVdaRmROVlhCaFZtMXdRMkV4VlhoVldHaFlZbXhLVDFadGN6RmpWbHAwWlVkR2JGWnNjREJVVmxaclZqQXhSVkpzYUZaTmJtaDZWbXhrUzFOR1VsVlNiR1JYVWxad1RWZFljRXRVTVU1WVVtdGtXR0Y2Vm5CWmExWmFaV3hhZEUxVVFscFdiWGhaVmtjMVQxbFdUa1pYYkZKYVlUSlNkbGxxUmxOV01rWkdWRzE0VjJKV1NsbFdha2w0VWpKR1JrMVdXbWxTUmtwWVZXNXdWMVZHYkZkWGEzUnJVbXhhTVZWWGVHdGhSVEZYWTBWNFYxSnNXbWhYVm1ST1pVZEZlbU5IYUZOaVZrcFFWbTE0YTAwd01VZGFSbFpTWWtkU2NWUldXbk5PVmxWNVpFZEdWVTFYVWtkVk1uaHJWMjFGZVZWdVdsWmhNWEF6Vld4YVMyUkdTblJrUms1T1ZtNUNTMVpzWTNkbFJURkhWVzVPV0ZkSGFGVlphMlEwVjBaU1dFNVdUbWhTYlhoNFZUSjBNRlV3TVZaT1ZuQllZVEZ3ZGxsV1dtRldNazVIWWtab1YwMHlhREpXYTJONFZqRkplRnBHYkdGU2JXaHdWbXhhZDJWV1dsaGxSazVYVFZkU1NGWXlkRzlVYkZvMllrWmFXbUV4Y0ROV01WcFNaREpHU1ZSc2FGTmlSM2N5Vm14amVHSXhaSE5YYTFwWVlsZG9hRlZzV25kVlJtdzJVMnQwVkZJd1draFdWM2hUVlRGYVdWRnNiRmRoYTFweVZGVmFjMWRHVmxsaVJtUnBZWHBXV2xkWE1UUlRNVkY0VjI1T1lWSnJOVmhWYlRFMFpWWlplV1JFUW1sU01IQkpWbGMxYzFkSFJYbGhSa0pYWVd0R05GWXdXbGRqYkhCSFYyczFhV0pGV1hwV2JURjNVVzFXUjFkWWJGVmhNbEp2VlcweFUySXhiRlZTYm1SWVVtMVNlbFp0TVVkaFJURllWV3hvV2sxR1dtaFdSRVpoWkVaV2RWRnNaR2xYUmtsNlZrZDBZVmxYVFhoalJXeGhVbXhLVDFsVVNqTk5SbVJZWkVkR2FFMVdjREJWTW5SdlZtMUtTR1ZIUmxwaVJrcElWbXRhWVdOV1NuTmFSM1JUVmtWYVYxWldaSHBPVmxWNVUydG9hMlZyV2xsWmExcGhZMnhTVmxwRlpGUlNhM0I0VmpKNFQyRldTWHBoUm14WFlsUldNMVpxU2xkak1XUjFWRzFHVTFkR1NsVldSbVI2VFZaT2MxWlliR3hTTTFKWFZGVlNRMDVXYkZaWmVsWlhUV3RhZVZVeU5VdFdNVm8yVW14b1lWSldjRlJaTW5oM1UwWktjMVJyTldsaVYyaG9WbTE0YTJReFRYbFRXR2hZWW1zMVdWbHRjekZpTVZWM1drWk9WazFYZUhwV01qRkhWa1pLYzJORmJHRlNWMUYzVm1wR1NtUXlUa1ppUjBaWFZqQXdlRlp0TUhoU01rNXpWRzVTYUZKdFVtOVVWbWhEWWpGa1ZWSnRSbFZOYkVwSFZERmFhMWxXU1hsbFJsSlZWbXhhTTFkV1dscGxWMUpIV2tkb1RsSkZXa3BXVnpFMFdWWlNjMXBGV21wVFJVcFhXVlJHZDFSR1dYZFhiazVxVFZaYWVsZHJXbE5WTWtwSlVXeHdWMUpzY0ZoVVZWcGFaVlpPY21GR1dtbGlhMHBvVm0xNFlXUXdNSGhpUmxwWFYwZG9XVlp0ZEdGWGJHdDNWMjEwVmsxcmNFaFpNR00xVjBkRmVGTnJhRmhXYlZKVVZXcEdUMlJXVG5SaFJrNU9UVlZ3VmxZeFpEQlpWMUY1Vlc1T1lWTkZOV2hWYTFaTFdWWmFkRTFXVG14aVIxSjVXVlZWTlZZd01YSmpSbVJYVFdwQk1WWnNXbUZqTWs1SlkwWldWMUpXY0ZWV2JYQkxVakZLYzJORlpHRlNWRlp2VkZSQ1NrMVdXWGhWYTA1YVZqQnNORll4YUhOVk1XUklZVVpzV2xZelRYaFdNRnBYWXpGa2RWcEdaRTVYUlVwWVZtcEplRTFIUm5SVGEyeFNZVEo0WVZSVlpGTmxiRnB4VW0xR2ExWnJXbmxaTUZwcllVZEZlVTlVVGxkTlZuQm9WbGN4VjFJeFduVldiRkpvWld4YVdsWlhNVEJrTWxKelYyeG9UbFpHU25KVVZtUlRVMFpzY21GRk9WZGlWVlkxVmxkek5WWldXbk5qUjBaVlZqTm9XRnBGWkU5T2JFcDBZa1pPYVZORlNUSldiRkpMWkRGSmVGZFlhRlJYU0VKdlZXMHhiMWxXV25STlZrNVRUVmhDV1ZwVlZtdGhNVmwzVjJ0b1dHRXhjSEpaYTJSR1pESkZlbHBHWkU1V01VbDZWbGh3UjFWdFZrZFViR3hvVW0xb2NGbHJXbmRYUm1SWVpVYzVhVTFXY0ZoV2JUVkhWVEpGZWxWdVRscGhNWEF6VkZWYVUxWnRSa2hQVm1Sb1pXdGFXbFpzWXpGa01XUnpWMnRhVDFkRmNGaFpWM1IzVkVaWmVGZHNaR3BOYTFwSVZtMTRhMVJyTVZaaVJGcFhZbGhDUkZkV1dtdGtSbHB6WVVaa2FFMXRhRkpXYlRCNFZURlJlRmR1VGxwbGJFcHpWbTE0ZDAxR1VsZFZiRTVXWVhwR1dWWlhOWGRXTURGeFZteENXbFl6YUV4V01XUkhVMGRHUjFkdGJGaFNNbVEyVm14U1ExbFhUblJXYkdoVllXeHdXRmxyWkZOVU1WcDBUbFZPVDJKR2JEVmFSV1F3VkRGSmQxZHJaRlZXYkhCMlZsVmFZVkl4WkhOaFJuQnBVbXR3U1ZaR1VrZFdNazVYVTI1V1ZXSkhhRlJaVkU1RFdWWmtWMVp0Um1sTlYxSklWVEZvYzJGR1NuUmxSbXhYWW01Q1IxcEVSbmRTVms1eVdrWk9UbFp1UVhoV1Z6RTBWakpHVjFOc1ZsZGlSMUpZVlcxNGQyTnNVbkpYYlVacVRWWndNVlpYY3pWV01EQjRVMnhzVjFaNlJUQmFSRXBYWXpKRmVscEhhRk5sYlhoWlYxWm9kMUl3TVZkV2JHaHNVbXMxV0ZSWGRHRmxWbFowWTBaT1YwMXJXbmxXTWpGdlYyc3hWMk5IYUZwbGExcHlXVEp6TVZkSFNraGlSazVZVWxWV05GWnRNWGRTTVd4WVVsaGtUMVpYVWxkV01HUnZWbFpzZEdSSVpGWlNiSEF3VkZaYVQyRkdTbk5YYWtKVllrWmFVRmxYZUV0ak1XUnhVVzFHVTFZeWFIbFdiWFJoV1ZkTmVWUnJWbEppVlZwVVZtcEdTMU5XV25STldIQnNVbXhzTlZVeWRGZFdiVXBJWVVjNVZWWjZSblpXVmxwaFkxWkdkR1JHVWs1V01VcGFWbGN4TUdFeVJrZFRiazVZWWtkb1dGbHNhRk5OTVZweVYyMTBhazFYVWpCVmJYaDNWakpLVjFOcmFGZFNiSEJvVm1wR1lXUkdUbk5oUjJoVFZrZDRXVmRYZUc5Vk1EQjRWVzVTYkZJd1duRldiWE14Vm14V2RHVkhkRlZpUm5CNldXcE9hMVl4V2paUldHaFhVa1Z3U0ZsNlJrOWtWbFowWlVaT2FWWXlhRzlXYlRFd1ZqRnNXRkpyWkZoaE1YQlpXVzF6TVZkR2JISmFSazVPVW14YU1GUldhR3RXTURGeVZtcGFWbFp0YUhKV01HUkdaVVprZEdGR1pGTlNWbkJWVjFod1IyRXhaRmhTYTJSV1lrZG9WRlJYTVc5WGJGbDRWMnhPVkUxV1dubFVWbFpyVjBkS1IxZHNWbHBXUlhCVVZtdGFjMWRYVGtaYVJtaHBVbTVDV2xaR1dtcE9WbHB5VFZoT1dHRnJTbWhXYkZwM1pXeGFjVk5yZEZoV2ExcDZWVmQ0YTFZeFNsZGpTR3hYVmpOQ1NGcEVSa3BsUjA1R1lVWk9hVkpVVmxsV1YzQlBZakExUjFkdVNsaGlWVnBoVm1wR1IwMHhVbGRYYlhSWFRXdHdlbFV5TlU5V2JVcFpWRmhvV21GcldsaFpla1pYWTJ4U2NrOVdUbWxTYkd0NFZqSjRWMkV4U1hoWFdHUk9WMFZ3Y1ZWdGVIZFdNV3h5VjJ0MFUxSnNjREJVVmxwcllXMUtSbU5JYUZkV00yaG9XVlZrUm1Wc1JuSk5WbVJYVFRCS1NWZFdVa3RVYlZaWFUyNUthRkl5YUZSVVZFcHZaREZhY1ZGdGRHbE5WM2hZVmpJMVUyRXhTWGRYYlVaWFlsUkZNRll4V21GV01rWklUMVprVjAxR1dURldiR1EwWXpGWmQwMVZhRlpXUlVwaFZGWmFkMWRHYkRaVGEyUlRUVlpLZWxsVldrOWhWa3BaVVcxR1YwMXVVbGhaYWtwR1pVWmtjbHBHYUdsaGVsWjRWbGQ0YTA1R2JGZFZiRnBZWW0xU1YxVnRlSGRsUmxaMFpVaGthRTFFUmxoWk1HaHZWakpLV1dGSVNsZGhhMFl6V2xaa1IxSXhTbk5hUlRWWFltdEtkbFpxUm1GaE1WSjBWbXhrVm1KcmNHOVZha3B2Vmtac2RHUkZkRlpTYlZKWlZGVm9iMkZYU2xkWGJuQlhUVzVvZGxsWGVFdFhSbFoxVTJ4V1YySkdWalJXVkVaaFZtMVdXRlZyYUd0U2JWSllWRlZhY21WV1duUk5WRkpwVFZac00xUldWbXRYUjBWNVlVWmFXbUV4Y0ROWlZWcDNVbXhhV1dGR1pGZGlSbTkzVjFaV2EySXlTa2hTV0docVVqQmFXRmxzYUc5aFJteHhVMnMxYkZKdFVucFhhMlJIVlRGWmVXRkljRmRXZWtVd1YxWmFhMUl4Vm5OWGJVWlRZWHBXZVZkWGRHRmtNbFpIVm01U1QxWlViRzlaYkZaM1UyeFdXR1JIT1ZkTlZXdzJXVlZvWVZZeVJuSmpSWGhYVFZad01scFhlSGRTTVhCSFZHMXNWRkpWY0RKV2JURXdWVEZOZUZOWWJGVmlhM0JQVm0weFUySXhWbkZVYlRsWFZteGFlRlpITURWWFJscHpZMFZvV0dFeWFISldha0Y0VmpGa2NtRkdaRTVpYkVwWlZteFNTMU14V25OYVNGWlVZa1p3YjFsVVJuZFVWbHBZVFZSU1dsWnJOVWxXYlhSdllURkplV0ZHYUZwaE1taEVWVEJhWVdSRk1WbGFSbFpPVm0xM01WWlVTalJqTVZaMFVsaGtUMVl5YUZoWmExcDNUVEZhUmxkdFJtcFdhM0I1VkRGa01GWXlSalpXYWxwWVZteGFjbGw2UmxabFZrNTFVMnhTYUdGNlZsbFhWM2h2VVRGS1IxZHVSbE5oZWxaelZXMTRTMlZzWkhKWGJUbG9WakJXTkZrd1dtRlhSbHAwVlZSQ1ZtVnJXbnBXYWtaclpGWldjazVXWkdobGJGcFhWbTB3ZUU1R2JGWk5WV1JxVWxad2FGVnNaRk5pTVZwMFpFaGtiRlp0ZEROV1YzUlBWakF4VjJKNlNsWldiRXBJVm1wQmVHUlhSa2hoUmxwcFYwVXhORlp0TVRSV01rMTRXa2hLVDFadFVuQlpWRUoyVFZaYWRFMUlhRTlTYlhoWVZsWm9jMVpYU2toVmJHaGFZbGhvVEZscVJsZGpNVlp6V2tkc1RsZEZTbHBYYkZaaFlURlNjazFXWkdwU1JVcFdWbXhrYjJSc1draGxSWEJyVFZad2VGWlhlSGRoUlRGWlVXNXNWMkpZVW1oWlZFWlBVMFphY21GR1FsZGlTRUozVjFjeE1GTXdOWE5YYmxKT1ZrWktZVlpxUVRGbGJGbDVUbFYwYUUxVmNIcFdNbmhUVjIxRmVXRkZVbGROYm1oeVdYcEdZV1JIVWtkVWF6Vm9UVmhCTVZacldtRlpWMDE0Vm01U1UxZElRbE5aYTJRMFdWWmFjbFp0Ums1TlZuQlhWakl4UjFaR1NYaFhhMmhhVFVkUk1GbFdXbUZXTWs1R1lrWm9WMUpWY0c5WFZsSkxVakZLY2sxV1pHbFNhM0J2V1ZST1ExZHNXbkZSYlRsU1RWVTFTRll5TlZOVWJGcDBWV3hvVlZac1ZYaGFWM2h6WTJ4d1NWUnNXazVoTTBKTFZsWmpNV0V4V1hsVGJHeFdZbXR3VmxsVVJuZGpiRlp4VW01a1UwMXJXa2xhVlZwUFlrZEtXV0ZFVGxkaE1YQm9WMVphVG1WR1VuSmFSbWhZVWpOb1VWWnRlRzlWTVdSWFZtNUdVbUp0VWxoVVZscHpUbFpTYzFadGRGZE5WbkI2V1d0U1lWWXhXalpTYmxwWFlsUkdTRmt5ZUd0a1IwWkhWMnMxVTAxVmNGcFdiR1IzVWpGVmVWUllhRmhpYkVwd1ZXMXpNV05HYkZWUmJIQk9VbXh3TUZwVlpFZGhSVEZ6VW1wU1YySkhhSFpXTUZwclUwZEdSMkpHY0ZkTk1tZDZWbXhTUjJNeFpFaFdhMXByVW0xU1QxWnFUbTlYYkdSeVZtMTBVMDFyV2toVk1qVlRZVEZLUjFkdFJtRldNMDE0V2tkNFlXTldSbGxoUm1oVFlrWnZlRmRYZEdGV01rWlhVMjVXVW1KdGVGaFphMXBMVkVaV2RFMVdaR3BOVlhBeFZrY3hkMVV5U2xkVGJFSlhZbGhDU0ZWcVFYZGxSbkJIV2taYWFFMHhTbFpYVjNoaFdWWmtSMWR1VWs5V2JWSllWbXBDZDFOV2JGWlhiazVYWWxWYWVWWXlkRFJXTURGMVlVaEtWMDFIVWxoVk1GVTFWakZrY2s1V1pHbGhNSEJoVm0wd2QyUXdNVmRUV0doWFlteEtWVmxyV25kWFZteHlWMjFHV0ZKdGVIcFdWM1JoVkd4S2MyTklhRlppV0dneldXdGFZVlpXU25OYVJtaG9UVmhDZVZadGNFSmxSazVYVW01S2FGSnRhRmhWYkZaM1ZsWmFXR05GWkZwV01ERTBWMnRvUjFkSFNrWmpSbWhXWWtad00xWXhXbXRXTVhCRlVXMTBUbFpyY0VsV2Fra3hWREZrU0ZKWWNGWmlSMmhZV1d4b1UyRkdjRmhsU0VwclRWaENSbFpYTVc5Vk1WcEdVMWh3VjFaRmJ6QlZla1phWkRBeFYyRkhhRk5TVkZaWVYxWmtNR1F4VlhoalJscFlZa1UxY1ZSV2FFTlRSbHAwVFZoT2FGWnJjRnBWVjNCWFZqSktTRlJxVW1GV00wNDBWbXBHVjFkWFJrZFhiV3hUWW10S1dsWXhZM2RsUmxWNFdrVmthVk5GY0ZsWmJYTXhWVVpXZEUxV1RteFdiSEJaV2tWVk5XRkdTbk5qUmxwV1lsaG9jbFpxU2t0WFZrWnpVV3hrYVZJeFNrMVdWM0JIWVRKU1YxUnVUbUZTVkZaVVZGWldkMVJzV1hoVmEzQnNVbXhHTkZaSGRHdFdSMHB5VGxab1dtRXlVbFJXYTFwYVpERmFjbVJHWkdsU2JrRjNWMnhXWVdFeFpITlhibEpzVW0xNFdGWnFUbE5oUmxwSVpVZEdhMUpzV25wV01uaDNZVVV4V1ZGck1WZGlXRkpvV1hwS1QyTXlUa1pXYkZab1pXeGFXVmRYZEc5Uk1VNXpXa2hPVjJKVldtRldiWGhIVGtaWmVHRkhkRmhTTUZZMVdsVmFhMVpXV2paV2JGSmFWbFp3ZWxZd1pGZFNiVkpIVkcxc1UxWkdWak5XTVZwWFdWZEZlVkpzWkZSWFIyaFZXV3RhWVZkR1duSldhM1JvVW0xU1dGZHJWVEZpUmtwMVVXdHdWMVl6YUZCWlZscEtaVVpPYzFGc2FGZGlWMmQ2Vm0xd1IxUXhXWGhhUm14cFVqTlNWRlJWV25kWFZscEhWMjFHYWsxRVZsaFdiR2h6WVRGT1JrNVdaRnBpUmxwb1dsZDRjbVF4WkhSUFZtaHBWbGhDU2xkV1ZsZFZNVnB5VFZWa2FsTkZjRmhaVjNSaFkyeHdSbHBHVGxOTmExcElWa2N4YjFSck1VWmhNMmhYWWxoQ1RGUlZaRVpsVms1WllVWmtXRkl6YUZWWFZtUTBaREZrUjJKSVVrNVdhelZaVlcxNGQwMVdhM2RXYTNScFVtdHdlbFl5ZUhOWGJWWnlUbGhhVjJGclJqUldNRnBYWXpKT1IyTkdaRmRpYTBsNVZqRmFZVmxXVG5SV2EyUlZZbXhLYjFWdE1WTmpSbGwzVm10MFUxWnNjREJaTUZaTFZHeGFjbUpFVWxoaE1taFFXVlZhUzFaWFNrZGhSbkJZVTBWS1dWWnFRbUZaVmtsNFkwVldVbUpZVWs5WmExcDNWMVphYzFsNlJsVk5WMUpKVlRJMVMxUXhXblJsUjBaYVlURndhRll3V2xOamJHUjFVMjEwVGxkRlNrcFdSRVpoWVRGU2MxTnJXbGhoTW5oWlZtdFdTMlJzY0VWU2JIQnNWbXMxZVZkclpIZFZNa1YzWTBkb1dHSkhVWGRYVmxwWFVqSkZlbUpIY0d4aE1YQlpWa1phWVZNd01VZGlTRXBZWWtVMVYxUldXbmRYYkZaWVpFaGtWMDFyY0ZaVmJGSkRWMnhhTmxKc2FGWk5SbkJvV2taYVQyTnJPVmRhUjJ4WFlUTkNhRlpxUm1GVk1VMTRWbGhvV0dKSFVuQlZNRnBMWTJ4VmQxcEdUbXBXYkhBd1dsVmFhMVJyTVZoVmJteFhWak5vVUZZd1drdGpNazVGVVcxR1YxWnVRbTlXYlRCNFV6RmFWMWR1VmxSaVIxSndWVzAxUTFSV1pISldiWFJYVFZWc05WVnRkR3RaVmtwVlZtNUNXbUV4V21GYVYzaGFaVVprYzFSc1RrNVdNMmhhVm10ak1WUXhiRmRVYTFwWVlrWktZVmxVU2xOa2JHeHhVbXhPVjAxcldrZFdSekUwVmpKS1YxTnNiRmRoYTJ3MFZXcEtSMUpyTVZkWGJXeFRVbXR3V1ZaWE5YZFdNVlpIWWtaa1dHRXpVbkpWYlhoaFRWWldXR1ZIZEdoU1ZFWllXVEJXTkZZeFNuTlhiV2hZVm0xU1QxcFZaRVpsYlU1SVlVWk9hVlpyY0ZGV2JURTBZVEF3ZDAxVlpHRlNiRnBUV1d0a1UyTldVbGRYYms1UFZteFdOVnBGWkRCaFIwcEdUbFZrVmsxdWFIWldiRnBoVmpKT1NHRkdaRk5XYmtKdlYxaHdSMkV5VWtkVGJsSnJVbXMxVDFWcldtRlRWbHB4VTJwQ1dsWnNWalJXVnpWUFYwWmtTR0ZHVmxwV1JXOHdWakJhYzFkSFVrbFhiWFJPVmpOb1YxWlhNSGhOUmxwSFUyNUtUMWRJUWxoVVZ6VnZaR3hzVjFwRldteGlSVnA2VjJ0YWEyRldaRWhoUnpsWFYwaENTRlpFUmtwbFJtUnpZa2RHVTJKWGFIZFdiWGhoWkRKV1YxZHNhR3hTYXpWWVZGWmtVMU5HV1hsa1J6bFZZa1p2TWxscldtRlhiVVY0WTBST1YwMVdjRk5hUkVwSFUxWlNjMkZHVG1sU00yTjVWbTE0YW1WSFNYaGFTRTVZWVRGd1dWbHNaRzloUmxaelYyNWtWbEp0ZHpKVk1uUXdWa1pKZDFkcmFGZFNNMmhRVm1wR1MyTXlUa2RpUm1ScFZrVkpNRlpIZEdGak1XUkhWbXhzYVZKck5XOVVWM2hMVjJ4YWNWRnRkRlpOYTFwSVZtMDFUMVp0U25KT1ZtUldZbFJGTUZwV1dscGxWVFZZWkVkc1UwMUlRa3BYYkZaaFlURmtTRkpZYkdoU2EwcFlXV3hvVDA1R2EzbE5WVGxVVmpCd1NGWXljekZoVjBwR1lucEtWMkpVUmpOVmVrWkxaRVphYzFwR1pHbFNiSEJVVjFkMGExVXlTWGhpUmxaVFltMVNXVlZ0TVZObGJGcDBUVlZrYUZKVVJubFVWbEpYVm0xS1dWVnVTbGRpVkVaTVZqQmtSMUpyT1ZkalIyaE9WbTA1TmxaclpEQlpWbXhZVkZob2FsSlhlR2hWYlhoTFZERnNWVk5xVGs1U2JIQjRWVzB3TldGVk1WZGpSRUpXVFc1U2NsbFhlRXBsVjBaSFdrWndhVkl5YUZCWGJGWmhWMjFXUjFwSVRtRlNNMUpVVkZaYWQxTldXWGxrUmxwT1ZteEtlbFl5TlZOaE1sWnlWMnhzV2xaRldtaFdhMXBYVmxaT2NscEdUbWhsYTFwWlZtcEplR014VlhoVGJGWlhZa2RTV1ZacVRsTmhSbVJYV2tVNWFrMVhVakZXUnpGSFZURmtSMU5zVmxkU2JWSTJWRlphVDJNeFdsbGlSM2hUVFRGS1dGWkdWbE5STURWWFlrWmFXbVZzV2xoVVYzUmhaVlpWZVU1VmRGZE5WbTh5VlcxNGIxbFdTbGRqUmxKYVRXNW9NMVV3V2t0ak1WSnlUbGRzYVZZeWFHOVdiVEUwWVRKUmVGUlliRlJYUjJoWldXMXpNVmRXYkhSamVrWnBUVlpXTTFkcldrOVdhekZZWlVod1YwMXFSa2hXYTFwTFl6Sk9SbUpIUmxOV01VWXpWbTF3UjFOdFVYbFVhMXBwVWpCYVdGWnFRWGRsUmxwMFRVaG9VMDFyTlhwV1J6VlRZVVpLZEZWdE9WVldiV2hFV1dwR2ExWldTblJTYkZaT1lrVndTRlpFUm1GaE1XeFhVMWhzYkZKc1NsWldiWGhoVFRGa1YxZHNjR3hXTVVwSVYydGtiMVJzU2taWGEzQlhWbnBGTUZkV1dsTmpNWEJHVjIxd1ZGSlZjRmhYVmxKSFpERlNSMWRZWkZoaWF6VnhWRlphWVdWc1pISlhiWFJXVFd0d1NsVlhkSGRYUjBwSFYyNUtWbUZyV2xOYVZscFBZekZrZEdOR1RsZE5NbWhaVmpGa05HSXlTWGxVYms1cFVtMVNXVmxzYUZOV1ZsWjBUVVJXVDJKSGRETldNakExWVVaYWNtTkVSbFpXZWtFeFZtcEJlRll5VGtsVGJHUlhVbFp3VFZkVVNucGxSbGw0WTBWa2FGSXllRmhXYlRWRFZteFplRnBFUWxwV01VWTFWbGMxVDFsV1RrWk9WMmhXWVRGYVRGZFdXbUZrUlRGWFZHeG9VMkpXU2pWV2FrbzBZVEZhZEZOc1dtcFNiSEJoV1ZSS2IxTkdXbk5YYlVacVRXczFTbGt3V2xkV01VcFhZMFpXVjJKWVFreFZha1pMWXpKT1JscEdhR2hsYkZwMlZrWmFZV050VmtkWFdHaFlZa2RTYjFSV1ZuTk9SbGw0WVVoT1ZrMXJjSGxaTUZwRFZqQXhSMk5FVGxoV2JIQm9XWHBHYTJSV2NFaGxSbVJwWVRCd1dsWnRNVFJpTWtsNFYxaHNVMkZzY0hCVmJURnZWMFpXY1ZSdE9XcGlSM2hYVm14b2IxZEdTbFZpUmxwWFVqTm9jbGxXV2twa01EVkZVV3hrVTAweFNtOVdiR040VmpGSmVHTkZaR2xTTUZwVVZtdGFZVmRXWkZoa1J6bFNUVmRTZWxZeU5VZFZiVXBWWWtaT1ZWWnRVbFJWTUZwelkyMUdSazlXWkdsV1Zsa3hWbXhrZWs1V1dsZFhiazVxVWpCYVZsWnFUbTlYUm5CR1drVTVUMkpGY0RCWmExcFBZVlpPUmxOVVNsZGlSa3BNV2tSR1NtVkdaRmxoUmxKWVUwVktkbFpYTUhoaU1XeFhWMjVTVGxack5WUlVWbWhEVjFad1ZsWnRkR2hOVm5Bd1ZsYzFkMWRIUlhoalNFcGFZVEpTUjFwRVNrWmxiSEJIV2tkc1dGSXlhRlpXYkdSM1VqSk5lRmRZYUZWaVIzaHZWVzB4VTJOR2JGbGpSbVJZVm0xU1dWcEZaRWRXUlRGeVRsVm9WMDFxVmt4WFZscExVakZPZFZOc1ZsZGlTRUY2VmxSQ1lWZHRWbFpOVmxwaFVqSm9UMVZyVm1GT2JGcHhVMnBTYVUxV2JETlVWbWhYWVVaT1IyTkhSbGRoTVZwb1ZrVmFWMlJIVmtaUFYzQk9WMFZLU1ZadE1UUmhNVmw1VWxod1VtRXpRbGhaYkdoRFVrWmtWMXBGTld4V2JFb3hWa2Q0YTJGWFJqWldiR1JZVmpOU2NsWlVSbEpsUm1SMVZHeHdiR0pGY0hwV2JURTBaREF4UjFWc1pGWmlSVFZ2Vm14U1IxZEdiSEpWYkdSWFlYcEdNVmxWV205V01WcEdZMFZrWVZaNlJraFZha1ozVWpKT1NHSkdUazVpVjJRMVZtMHhORll4YkZoVVdHUlBWMFUxVmxsdGRIZGhSbFowWTNwR1ZVMVdjSGhWYlhSM1lUQXhXRlZzYkdGU1YxSklWbXhWZUdOc1pISmFSbFpYVmpKb2VWWnRkR3RUTVZweldraE9hRkp1UW5CVmJYUjNVMVphUjFWclpGZE5helZZVlRJMVYxWlhTa2hoUmxKYVZrVTFSRmRXV210V01WcDBVbTFzVGxZeFNrbFdWRVp2WXpKR1IxTnVVbXhTYlhoWVdXMDFRMUl4Y0VWU2JtUlRWbXMxZVZkcldrOVViRnAxVVZob1YxWjZSVEJXYWtwSFZqRk9jMVpzWkdsU01VcFpWbGN4TkdReVRuTlZia3BZWWxWYWNWUldXbmROVmxwWVkzcFdWMDFFUWpSVk1uaHpWakZhTmxKVVFtRlNSVVkwVldwR2EyTXlSa2hsUmxKVFZrWmFiMVp0TUhoTlIxRjRXa1prV0dFeVVsZFpWRXBUVjBaU1YxZHVaRk5OVmxvd1dUQmFUMVl3TVhKWGJteFhUV3BHZGxZeWMzaFdNazVJWVVad2JHRXhjSGxYVkVwNlRWWmtTRk5yYUdsU2F6VlpWV3hXYzA1V1duUk5XR1JUVFZkNFdWVnNhR3RVTVZwWVZXeGtWMDFIVW5aV2JGcHpaRWRTU1ZwR1dsTmlTRUYzVmtaYVlWUXlSbFpOVm1SWVlXdEtWbGxyV21GVlJteFlaVVYwYWsxWFVqRlpWVnBoVkcxR2NsSllhRmRpV0VKSVYxWmtUbVZXVW5KWGJXaFRZbFpLV1ZaR1VrZFRNbFpYV2taa1ZtRXdjSE5WYlhoelRsWlZlV1JHWkZkaVZYQkpXVlZqTlZaV1dqWlNibHBYWWtad2NsWnFSbGRqYkhCSFZXMXNWMkpJUVRKV2JHTjNUVlpaZUZadVVsUmhNbEp4Vlc1d2MxbFdXbkpXYlVaT1RWWndSMVl5TVRCaGJVcEhWMjVzV0dFeGNETldha3BHWld4R2MySkdaRmRTVjNRMFZteFNTMUp0VmtkVWJHeHBVak5vVkZaclpEUlhWbVJZWlVaT1UySldXbnBaTUZwdllrWkpkMWRzVWxWV2JWSlVXbGQ0YTJOc2NFaFBWbFpwVmxaWk1GZFVRbGRpTVZsNFUyNU9XR0pzY0dGYVYzUjNWRVpXY1ZKck9XdFdiRm93V1ZWYVQxUnNTblZSYlRsWFRWWndWRlZxU2xKbFJsWnlXa1prYVZKc2NGVlhWekI0VlRGa1IySklTbUZTYXpWUFZtMTRkMU5XVWxkaFIzUlhUVVJHZVZadGNHRldiRmw2VVcxb1YwMUdjR2hWYlhoUFpGWk9jMVp0YUU1WFJVcFpWako0WVZsV1VYbFVXR2hxVWxkU1YxbHNaRzlqUmxaMFRsVk9XR0pHYkRSV01qRXdWR3hKZUZOdWJGVldiRnB5VmpCa1MxSXhaSE5XYkhCWFVsaENWVlpxUm1GV01sSklWR3BhVTJKWWFGaFpiR2h2VGxaYWNWTnFRazVTTUZwSVZqSTFTMkZXU2tkWGJVWlhZa1p3TTFwWGVGcGtNV1J6WTBkNGFWWldjRXRXYWtvMFlURlplRk5zWkdwVFIzaFlWbXBPUTFOR2NFVlNhM0JzVWpBMVIxbFZXazloVmtwVlZtNWtWMkpVUlhkYVJFRXhVakZrZFZOc2FHbFdWbkIyVmtaYVlWWXdNSGhWYkdSWVlsaFNXRlJYZEhkbGJGVjVUbFU1VjJKVmNFaFZNalYzVjIxR2NsZHRhR0ZTVjFKVVZURmFVMk5yT1ZkVWJXeFRZa2QwTkZadGRHdE9SMFp5VGxaa1dGZEhVazlXYlhoM1kxWlZkMkZGVGxwV2JFcFhWMnRqTlZaV1NuTmpTR2hXWWxSR1NGWlVTa3RXYXpWV1lVWndWMVp1UVhwWFYzUnJVbTFXYzFKdVNrNVdiVkpZVkZSQ1MxTldaRmRWYTNSV1RWVnNORlpITlZkV1YwcEhZMGhDVm1KR1NsaFdNVnBoVjBVeFZWVnRkR2xXYkhCWlZtcEpNVlV4VW5OVWEyaFdZbXMxVjFscldrdFhSbFY0VjIxR1YwMXJXa3BXUjNoclZHMUZlbEZyY0ZkaVIwNHpWR3hhWVZZeFpISlhiWEJUWWtWd1dWZFdaREJaVjFaellUTnNiRk5IVWxSVVZscExaV3hzVmxkck9XaFdhM0JhVlZkNGMxWXlTbGxoU0VwVlZsZFNSMXBWV25kU2JIQkhZVWRzYUdWc1dqUldiR04zWlVkSmVHSkdaRmhpYXpWb1ZXMTBkMk5zVWxkWGJrNU9UVlpzTlZwRlVrTmhSMFkyVW01c1ZXSkdXbWhXYlhoYVpXMUdTVk5zWkdoaE1GbDZWMnhhYTFJeFNYaFRiazVoVWxSV1dGbHRkRXRrYkZweFVtMUdhRTFXU2pCV2JYaHJWbTFLY21OSE9WWmhhM0IyVm10YWMyUkhVa1prUmxwVFlsWktXbFpHVm05aU1rWllVMnhrV0dKdVFsaFVWelZ2Wkd4c1dHVkZkRmhTYkZveFZUSjRWMVl5U2tkV2FsSlhWa1ZhYUZadE1WZFhSbFp5WVVaQ1YwMXRhRmxYVmxKUFVUQTFWMWRyYUd4U01GcHhWRlphZDAxR1ZYbGtSM1JZVWpCd01GcFZaRzlXTWtwSFkwUk9XbFpXY0ROVmJYaGhWMWRHUjFwR1pHbFNiVGt6VmpGYVYxWnJNVmRXV0doVVlrZFNjVlZzYUVOWFJteHpZVVZPVkZKdGVIaFZNblIzWWtaS2RGVnVjRmhoTWxKSVZsUkdXbVZYUmtsWGJHUlhaV3RKTUZaSGRHRmhNVWw0Vm01T1dHSlZXbFJaV0hCWFpWWmtXR1JIUm10TmJGcElWbTAxVTFReFdsVmlSemxhWWtaYU0xVXllRmRYUjFKSlZHeGtWMVpGV2xwV2JHUjNWREZrYzFkdVRtcFNXR2hoV2xkMFlXTnNXWGhhUlRsVFRWaENSMVJzWkhOaFZrcFpVV3BLVjJKVVJYZFdWRVpLWlVad1NWVnNaR2hOYkVwdlZsUkNZVmxXV25OaVNFNW9VbFUxV0ZWdGVHRmxiRnAwVGxkMGFGWlVSbGhaTUZKRFdWWmFXRlZZWkZwV2JGWTBXVEp6TVZkWFRrZGFSVFZYVFcxb05WWnRjRU5oTVUxNFYyNU9ZVk5HV2xWWmExcDNZakZzVlZKdVpGVldiSEJaVkZaU1UxZHNXbkpPVld4WFlsaFNkbGxVUmtwbFYwWkhZVVp3YVZKdVFrMVdWRUpoV1ZaSmVGZHVVbEJXTW5oUFZtMHhNMDFXV2xoTlJFWlVUVlp3U1ZVeWVHOWhSa3AwVld4YVYyRnJOVVJWTUZwaFZsWktkVnBHWkU1V01VbzJWbXRqZUdReVJsZFRXR2hVVjBkU1dWWnRlR0ZoUmxwRlUydGtXRkpyY0ZwWGEyUjNWVEpGZUdOR2JGaFdNMUp5VmtSQmQyVkdWbk5hUm1ob1RWaENlVlpHVmxOU01XUnpWMnRvYkZKNmJHOVdha0pYVGtacmQxZHRSbGhTYkc4eVZWWm9iMVpzV2taalJUbGhWbFp3YUZwR1dsZGtSMUpIVld4T1YxSnNjRk5XYlhocVpVVTFTRlZZYUZWaVIxSlhXVzF6TVZkR1duSlhiVVpZVW0xNGVsWnROV3RXTURGWVpFUk9WMkpVVmxCV2FrRjRWakpLUlZkc1pGTmlSWEJKVm0xd1FtVkhUbGRUYmtwc1VtMVNjRlZ0TlVOVVZtUnlWMjFHYUUxck1UVldSM1J2WVVaSmVXRkZPVmROUmxwTVZGZDRZV05XU25OVWJFNU9Wak5vV1ZaVVJtOWpNVnAwVWxoc1ZtSkdXbUZaYkdoT1pVWnNWbGRzWkdwTlZscDZWMnRrYzFSc1pFWlRiSEJZWWtaYWFGcEVSbE5rUms1eVdrZHNVMUpyY0ZsV2JYQlBWVEZXUjFkdVJsSlhSMmh4V1d4V2QxSnNXbGhsUjNSb1ZtdHNOVmxWVW1GV01rcFpWVzVLVm1KVVJsaFdNRnBMWTJ4d1NGSnNUbWxoTUhBeVZtdGFhMDVHVFhkTldFNVlZbXhLVDFacldrdFpWbHB4VW10MFZGWnNjREJhUldNMVZtc3hjbGRVU2xkaVdFMHhWbXBLUzFaV1duSlZiR1JPWW0xb2VWZFljRWRaVjFKSVZXdGtWV0Y2Vm05VVZtaENUVlphY2xkdFJscFdNREUwVm0wMVUxVXhaRWxSYkU1YVlUSlJNRmRXV21GamJGcDBVbXMxVGxadVFsaFdha2w0VWpGYVIxTllhRmhoTW1oaFZGVmtVazFHYkZkWGJVWlhUV3MxUjFscldtOVdNVXBXWTBjNVdGWnNTa3hWYWtaTFkyc3hWMXBIYkZOaE0wSjJWMVpTVDFFeFpITlhia1pTWWxSc1UxUldWVEZUUmxsNVRsWk9WV0pHY0RCV1YzaHZWbFphYzFaWWFHRldNMmg2V1RKNGQxTldVbk5YYXpWb1RUQktURlpzV21wTlYwVjRWMWhzVkdKSGVGZFpiWFIzVm14c1ZWSnVaR3BpUmxwNFZXMDFhMVV3TVhKWGEyeGhWbFp3VUZsclpFdFhWMFpGVkd4a2FFMVlRbTlXTVZwaFZHMVdSMVZ1U21GU2JXaFpWV3BPYjFWV1duUmxSemxXVFZkU1dGWnROVWRWYlVwMFZXeG9WVlpzY0hwVWJGcFRZekZhZEdSR1pFNVdia0kyVjFkMFUxbFdXWGhYYWxwVFlteHdXRmxzVWtkVFJtdDVaVWQwYTFJd1draFdNbk14VlRBeFZtTkdjRmRpUjFJelZXcEdWbVZXVWxsaFJtaHBZa1Z3ZDFaWE1YcE5WMDVIWWtaV1VtSklRazlWYlhoM1RVWndWbHBGWkdoU1ZFWjZWVzF3VTFZeVNraGhTRnBYVFVad2NsVXdaRWRTTWtwSFkwWmtUazF0WkRaV2JYaFRVakpOZUZwRmFGZGhNWEJ5VlcweFUxUXhXbkZVYlRsWVlrZFNlVlp0TVRCVk1ERnlWMnRvVmsxcVZsUlpWRVpMVWpGa2RGSnRSbGROTURFMFYydGtORmxYVGxkU2JHeG9VbTFvVkZsclduWmxSbVJZWkVkR1YwMXJXbGhWTWpWWFZXMUtkR1ZHYUZwaE1YQk1Wa1ZhVjJSRk1WZGFSM0JPVmxoQmVGWnJZM2hrTVZWNVUyeGtWR0pGU2xoWmJHaERVMFpXY1ZGWVpHeFNia0pJVjJ0YVlXRkZNSGhUYkZwWVZqTm9hRmRXV210U01XUjFWV3M1VjJKV1NsbFdiWEJEWkRGT1YySkdXbGhpYXpWWVdXeFdZV1ZXV1hsa1JGSlhUVVJHTVZsVmFFdFdNREZJVld4b1ZrMUdWVEZXYWtaclkyczFWMXBIYkdoTlNFSm9WbTB3ZDJReVVYZE5WbVJVVjBkb1dGbHRlRXRXVm14eVYyNWtXRlp0ZUhsV01qRkhWakF4V0dWSWNGZFdNMUpvVmtkNFMyUldSbk5oUm1ST1ltMW5lbGRYZEdGWlZscFhWMjVPYVZJd1dsUldha1pMVFd4YWMxVnJkRlJOVlRWWVZXMTRjMWxXU25SVmJrSldZV3RhU0ZSVVJtdFhWMDVHV2tkb1RtRjZSVEJXTW5SdlZESkdSMU51VGxoaVIyaFhXV3RhZDAweFdYaFhiWFJYVFZoQ1JsVlhNVEJVYkZweVkwVnNWMkZyV25aWmFrWnJVMFpLV1dKR1dtbGhNWEJvVjFkMFlWbFhSa2RXV0dSWVltdHdjbFJXYUVOU2JGcFlUVmM1VmsxV2NFZFZNV2gzVmpGYVJtSjZRbFpoYTFwaFdrUkJlRmRXV25SaFJrNU9ZbGRvWVZadE1IaE9SMUY0VlZob2FsSnRVbGxaYTFVeFkyeGFkR1ZIUm14aVJuQkpWRlpqTlZaWFNsWmpSV1JhVFVad1dGWnFRWGhYUmxaWldrWndWMUpXY0ZoWGJGcGhWVEpPYzJORlpHaFNNbmh3Vld4b1EwNVdXbk5WYTA1b1RWWldORmRyVm10aFZrNUdZMFpzV21KWVRYaFdWVnBYWkVVeFYxUnRlRmRpU0VKYVYyeFdWazVYUmtkVGJrNXFVbXh3VjFsc1VsZGxiRmw1VFZWYWJGSnJOWHBWVjNocllWWkplRk5yTVZkV00wSk1Wa1JHVDFZeFVuVlViVVpUVmtaYVZWWkdXbGRrTVZKelYxaG9hRk5IVWxSVVZscEhUbFphU0U1VmRGWlNiSEF3VmxkNGMxZHRTa2hWYmxwWFVrVmFhRnBGVlRGV2JGSjBaRWRzVTJKWVkzZFdha293WWpKRmVGWllaRTVXYlZKWVdWZDRTMWRHVWxkYVJ6bHJZa2RTV0ZZeWN6VlZNREZZVlc1d1YwMXVhRE5XTUZwUFVteE9jVmRzWkdsWFJrcHZWMWh3UzFReVRYbFVhMXBYWWtaYWIxcFhlR0ZYVm1SWVpFYzVVazFWTlhwWGEyaFBWakpLVmxkdFJsZGlXR2hJVkd0YVdtVkhSa2hrUm1oVFRVWlpNVmRzVm1GaE1WcFhWMnBhVjJKR1NtRldiRnAzWld4WmQxcEdaRk5pVmtwSVdWVmFUMkZXU25WUlZFcFhZV3R2ZDFkV1dscGxSbVJaV2tVMVZGSXhTbFpYVmxKTFRrWmtWMkpHVmxSaVJYQlBWVzB4VTFkR1pISlhhemxXVFd0Wk1sVnRlRzlXTURGeFVsaGtWMVpGY0V4VmJURlBVakZhYzJGR1pFNU5WWEIyVmpKMFUxRnJNVmhVV0doaFUwWmFWbGxzVm1GV1JsWjBaRWhrYUZKc2NEQlVWbEpUVmtVeGMxZHVjRmRpUjJoNlZrUkdZV1JHVm5OYVJuQnBVbXh2ZWxacVJtRmpNVnB6V2toV1ZXSkhhSEJXYkZwYVRVWmtWVkZzVGxWTlYxSjVWRlpvVjJGR1NYbGhSMFpWVm14d00xWkZXbkpsVlRGV1QxWlNVMDFXY0VsV01uUnJZekZWZUZwRldsTlhSMmhZV1ZkMFlXRkdXbkZUYTFwclRVUkdWMWRyV210WFJrbDVZVVp3V0Zac1NreFdWRVpyVmpKS1NWVnRlRlJTTVVwYVZsY3hORmxWTVVkalJscFhZV3RLVjFSV1ZuZGxiRmw0Vld0MFYySlZjRnBXUmxKSFZqRmFSbEpxVWxkTlJuQllXVEZhUzJNeGNFZGFSM2hvVFZaWmVsWnRNVFJWTVVaMFZWaHNWMkV5VWxaWmJYTXhWa1pzY2xwR1RsaFNiRXBXVlZkME1GVXhXbk5qUkVKYVRVWmFURlpIZUdGamJVcEZWV3hvYUUxdGFGRlhWbFpoVXpGYVdGTnJaR2hTYlZKdlZGZDRSbVF4V25GVGFsSmFWbTFTUjFSV1ZuTmhSa3B6WTBVNVYySkdTbGhXTVZwclZsWkdkRkpzY0ZkaVZrbDNWbTB3TVZReFpFaFRhMmhvVWpCYVlWbFVSbmRoUmxsM1YyeE9hbUpIVW5wWk1HUTBWakF4UlZacmFGZFNSVnBvV1ZSR1UyTXhUbkpYYkdob1RXNW9XbFp0ZEZkVE1sSnpZMFZXVTJKSVFuSlVWVkpIVmpGc1ZsZHRSbWhXYTNCNVdUQmFiMWRHV1hwaFJsSldZV3RhYUZWcVJtRlhWbkJJVW14T1YxSXphRmRXYkdSM1VUSlJlRlJyWkZoaE1taFBWakJWTVZZeFVsWlZhMDVQVW14YWVsbFZZelZXTURGeVkwWmFWbUpHU2tSV01uaGhUbXhLYzJGR1dtbFhSVFF3Vm0weE5HRXlUbkpPVm1SaFVtMVNUMWxzWkc5V01WcHhVbTF3YkZKVVZraFdSbWh2VjBkRmVWVnVRbFppVkVaMldYcEdWbVF4Y0VkVWJHaFhZa1p2ZDFaR1dsTlZNa3BIVjI1U1ZtSnRlRmxXTUdoRFYwWlpkMWRyZEdwTmF6VkdWVmN4UjFZeFduVlJiVGxYWWxSQ05GVjZSbUZXTVdSMVZteFNhVk5GU2xsWGJHUXdXVlpTVjFkc1ZsSmlXRkpZVkZaV2MwNVdWblJrUjNSYVZtdHdWbFp0TlVOWGJVVjRWMjFHWVZZemFHRmFWVnByWkVkU1NHVkhiRmRpU0VKTFZtMTBhazFXVFhoVldHaFlZbXMxY1ZWdWNITldNV3h6Vld4a1UxSnRlSGhWYlhoUFZqQXhjbGRyWkZkU00wMTRXVlphUzJSV1JsbGFSbWhYVWxWd1dWWlljRXRTYlZGM1RWWnNWV0pIYUc5VVZ6RnZWMVphV0U1WVpGZE5WVFZJVmpJMVMxbFdTbGxWYkZaV1lsaG9hRnBYZUhOV2JHUjFXa2RvVTFaRldsbFhWM0JQWkRGWmVWSllhR3BTTW1oWlZtMTRkMkZHV25GU2JFNXFUV3R3U1ZsVldrOWhWbHB5WTBaR1YySlVSVEJaVkVGM1pEQXhWbHBIUmxOaVJuQlVWMWQwYTFVeVRsZFZiR1JZWW0xU1ZWWnRlRmRPVm5CV1drVmtXRkpyYkROWk1GWnZWbXN4Y1ZKcmFGZE5ha1pIV2xWa1QxSldVbk5hUms1WFltdEdObFpzWkRSWlZrMTVWV3RrVkdKc1NuSlZiWE14VkRGYWRFNVZUbFJOVm5CNlYxUk9hMkpHU2xWU2EyaFhWbnBXVkZaVVJtdFRSMFpKVW14YWFWSXhSWGRXYWtKaFl6RmtTRlZyYkZSaVdHaFVXV3RvUTFZeFdsaE5WRkpWVFd0YWVWUldXbTlXYlVwMFpVWnNXbFpGV2pOV2ExcHpWakZ3UmxkdGVGTk5SRlpKVmpKMFlXRXlSbGRhUldob1VucHNXRll3YUVOVFJteFZVbXR3YkZKdVFraFphMlJIVlRKS1dHRklaRmRpV0dob1drUktWMVl4WkhOaFIzaFRZWHBXV1ZaR1dtdFZNVTVIVjFoc2ExSjZiRlpaYTFwMlRXeHNjbGR0UmxoaVZWWTBXVEJTVDFZd01WZGpSazVoVWtWd1NGVXhXbE5qTWtaSFZHMXNVMDB5VGpWV2JURTBZVzFXU0ZOWWFHRlRSVFZaV1ZSR2QxZFdiSE5hUnpsb1VteGFlbFl5Tld0V2JFcDBaSHBLVmsxdVVYZFdhMXBLWkRGa2NtRkdaRk5OTW1oUlZtMXdSMU15VFhsVWEyUnBVbTFTY0ZaclZrcE5SbHBJWkVkR2FrMVhVa2hXYlhoellWWktjazVYT1ZWV00yaE1Wako0WVdOV1JuUmtSbHBPVmpGS1NWWnFTVEZUTVZsNVUyeGFXR0pIZUZkWmJGSkdUVVp3VjFkc2NHeFdNVXBHVlZjeGMxVXdNVWxSYTNCWFlrZE5lRmw2UmxwbFZrNXlXa1pTYUUxdGFHaFdiWGhoWkRGU1IxZHVUbGhoTWxKeFZtMTRTMlZzV1hsamVrWm9WakJ3UjFZeGFIZFdNa3BWVW1wT1ZsWjZSbGhWYWtaclYxZEtSMVp0YUU1aVJYQXlWbXhqZDJWR1ZYbFRXR2hwVW14YVZGbHRNVk5YVmxaMFRWWk9iR0pHY0RCVVZsWnJZVVpLVlZKdWNGWk5ibWgyVm1wR1MwNXNXbkpsUm1SVFVsWndiMWRyVm1GV01sSlhVbTVPWVZJeWVGbFZiWFJ6VG14YWNscEVRbHBXYlhoWlZrWm9iMkZzU2xobFIyaFdZbGhvVEZaRVJuTldWazV4VkdzMVUySldTbHBYYTFaclVqSkdSazFXWkdwU1JVcFhWRmMxVTJSc1duUk5WWFJVVWpGYVNWVnRlSGRoVmtweVkwVnNWMkpZVW1oWFZtUlBWakZPZFZSdFJsTk5NVXBWVm0xMFYxbFdXWGhYYkdSaFUwaENVRlp0ZUZkT1ZsVjVaRWM1YUUxc1dubFdNbmh6VjIxRmVHTkhhRnBOYm1oVVZtMTRkMUpzY0VkVmJFNW9UVEJKTUZadGNFdE9SbEY1VW14a1ZGZElRbTlWYlRFMFYwWnNjMVZzWkU1TlZuQjRWVEo0YTJGck1WaFZha1pYVW5wR1NGWlVSbXRTTVU1elZteGtVMkpXU1RKV1JscGhWREpOZUZkc2JHbFNNMmhVVkZSR1MxZEdXa2RXYkU1U1RVUldXRmxyV21GWGJWWnpWMnhvVlZZelVtaGFWbHBXWlZVMVZtUkdaRTVXYlRoNVZsY3hOR0l4YkZkVGJHUnFVbXhLWVZSWE5XOU5NVlYzVjJ0MGFrMVdTbmxVYkdSellWWlplV0ZIT1ZkaVZFVXdXVlJLVW1WR1VsbGlSbEpZVWpKb1dsZFhNWHBOVm1SWFlraFNhbVZyV25CVVZscFhUVEZrY2xkck9WZGhla1paV2xWb2QxWXdNWEZTYTJoWFlURndURmw2U2s5U2JVcElVbXhPVjAxVldYcFdiVEYzVWpGa2RGVlliRlZoTVhCd1ZXcENZVmRHV25GVGJUbFRWbXh3TUZSVmFHOVdSVEZZVld4b1YxWXphSHBaVlZwTFpGWkdkRTlXY0ZkU1ZtOTZWbTE0WVZsWFRsZFNibEpyVW0xU1QxWnNhRUprTVZweldrUkNhRTFYZUZoVk1XaHpZa1pLYzFOc1dsZGlXR2hvVkZSR2ExWXhaSFJTYlhCcFVqRkpkMVpYTUhoak1WSjBVMnRhV0ZaRlNsaFphMlJPWlVaYVJWSnRkRlJTYXpVeFZUSnpOVmRHU2xkalJtaFlWak5vVkZWcVNsTmpNWEJIV2tab2FXRjZWbGxXYlRGNlRWVXhSMVZZYUZoaVIxSlhWRmQwZDFkR1ZYbGxTRTVYVFd0YWVWbHFUbXRXVmxwWFkwWk9ZVlpzY0ZCWmVrWnJaRWRPUjFSc1pFNWlWMmgyVm0wd2VFNUdiRmhWV0dST1UwZG9jRlZ0ZUhkWFJsbDNXa2M1V0Zac2NEQmFSV1JIVjBkS1NHUkVUbGROYWtWM1ZtMXplR050VGtaaFJuQk9VakF3ZUZacVFtdFNiVlpIVkc1S2FGSnRhRmhaYkZwTFZsWmFXR05GWkZWTmJFcFlWa2MxVTJGR1NuSk9WVGxWVm14YU0xWnRlRnBsUm5CRlVXeHdWMDFWV1RGV2JHTXhWREZzVjFScldrOVdNbWhYV1ZSR1lWUkdaRmRYYlVaclVsUkdXRlpITVRSaFZrbDRVMnBXV0Zac1dsZFViRnBhWkRBeFdWTnRjRk5pVmtwWlZrWmtkMUZyTVZkWGJrNVlZbFZhY1ZSWGN6RlRiR3QzVjJ4a1YwMVZjRmhaTUZwWFZqSktXVkZyZUZaaGExcE1XWHBLVDFKc2NFaFNiRTVYVW14d01sWnJXbUZaVjA1MFZteGtXRmRIYUZsWmEyUlRZakZTVjFadVRrOVNiVko1V1ZWVk5WZEdTWGRXYWxKYVRVWndlbFl5ZUZwbGJGSlpZVVprVGxKdVFsbFhXSEJIWVRKU1YyTkZXazlXVkZaWVdXdGpOVTB4V1hsbFJtUm9UVVJHU1ZWdE5VdFViRnAwWlVaT1dsWkZiekJaVlZwWFl6RmtkVnBIY0dsU2JrSktWMnhXVms1V1ZYbFRhMXBQVjBkNFlWUlZXbmRqYkZwSVpVZEdhMVpyV25wWmExcHZWakpLUm1ORk1WZFdSV3cwVm1wR1NtVkdaSFZXYkdScFVteHdkMVp0ZUdGa01WcFhWMjVTVGxKRldsTlVWbHAzWld4a2NsZHRkRnBXYTNCSVZUSXhSMVl5U2xWU2JGSldUVVp3ZWxreU1VZFNhemxYV2tkc1YxWnNhM2hXYlhoclpXczFWMWRzWkZoaWF6VnhWV3BDWVZac1duRlViVGxZVW01Q1IxZHJXazlWTVZweVYycENXbFpXVlhoV2FrWnJVbXhPVlZOc1pFNVdhM0JGVm14U1IxTnRWa2RhUm14b1VteEtXVlV3Vmt0a2JGcFlUVlJDVkUxWGVGaFdNalZUVkd4YWNrNVdVbFZXYldoRVZtcEdhMk5zV2xWV2JGcE9Va1ZhTlZaSGVGZGlNV1J6VjJ4a2FsTkZjRmhWYWs1UFRrWmFkRTFWT1ZOV2JIQjZWMnRrYzFkR1NYbGhSbHBYWWtkb00xVnFSbEpsVmxaeVdrWm9hV0V6UW05V1Z6QjRWVEpPUjJKR2JHcFNiVkp5V1d0YWQxZFdhM2RXVkZab1ZsUkdXRmt3Vm05V01ERllZVWhLVjJGcmNFZGFWM2hYWXpGd1IxZHRiRmRTVm5CV1ZtMXdSMWxYVVhoVGJrNXFVbFp3YUZWcVNtOVVNVlp5Vm0xR1dGSnNjRWxhVlZwcllWVXhWMkpFVGxWV2JIQjJXVlZhVDFOV1JuTmhSbHBvWVhwV01sZFdWbUZYYlZGNFdraE9ZVkl6UWs5WlZFNURVMVphY1ZOWWFHbE5hMXBIVkZaV2IxVkdXa2RqUm1oYVlrZG9SRlZyV210V01XUjBaRWQwVTJKSVFqWlhWbFpoWVRKR1JrMVlVbWhTYTNCWVdXeFNRMDVHV2xWVGEzQnNVakExU0ZsVlpEQlZNa3B5VTI1d1YxWjZRalJXVkVaclVqRmtkVlZyTlZOU2JIQjJWa1pXVTFJeFpGZFhiR2hQVjBkU1dGUlZVa2RYVm14V1ZXczVXR0pHY0ZoWk1GWTBWakF4V0ZWcmFGWk5SbkJNV1hwR1lXTXhjRVpPVlRWVFYwVktURlp0TUhoT1JsbDRZa1prV0ZkSGVGWlphMlJUVm14c2RHUklaR2hTYkZvd1dUTndSMVpWTVZkalNHaFdZbGhTTTFsVVFYaFhSbFp6WWtkR1UxWXhTa2xXYlhoV1pVWlplRlJ1UmxKaVJuQlBXVzB4YjAxc1pGZFdiVVpVVFZkU1NGWnROVTloUmtwMVVXNUNWbUpZVWpOVk1WcGhVakZXY2xwR1pFNWhlbFpaVmxSSk1WWXhXbGhUYTJob1VteEtZVlpyVlRGU1JtUlhWMjEwVjAxV2NEQlZiVEZ6Vkd4WmVGTnJiRmRXUlZwMldYcEtSMUl4VW5KaFIyaFRZbGRvV1ZkV1pIcE5WMUp6WWtaYVdHSllVbGhVVm1SVFpXeFplVTFVVWxaTlJFWktWVmQwTUZZeVJYbFVhbEphWVd0YVYxcFdXa3RqVm1SeldrZHNhVll5YUZwV2JUQXhaREZLY2sxVlpHcFNWbHBUVmpCa2IxWkdVbGhqZWtaVFRWWnNOVnBWWXpWaFJsbDNZMFpvVmsxdWFISldNRnBhWld4V2MyRkhSbE5TV0VKWlYxaHdTMUp0Vm5OalJXaG9VbXMxYzFsc2FHOVhiRmw0VjIwNWEwMVZiRE5VVmxwclZqSktTR0ZJVGxaaVdFMTRWakJhVTFkSFVraFNiWGhYWWtadmQxZFVRbUZVTVZsM1RWaEtXR0p0ZUZoVVYzQkhaR3haZVdNemFGZE5helZKV1ZWYWQySkhSWGhqU0d4WVlURmFjbFY2UmtwbFJsWjFVMnM1VjAxdWFGbFdSbVEwVW0xV1IxZHVVazVYUjFKVVZGWmtORmRXVm5OaFIzUlZUVlp3V1ZaWGVHdFdNREZJVlc1YVYySkdjSHBhUldSVFUxWndSMWRzVG1sVFJVWXpWbXRhWVZsV1VYbFNhMlJVWW1zMVdWbFhkRXRXYkd4eVYyMUdWbEp0ZUZsYVZWWXdZV3N4V0ZWdWFGWldla1pJVmxSR1dtVlhSa2xpUm1ScFYwWktiMVl4V210VWJWWlhWVzVLVjJKRmNIQldiRnAzVmxaYWRHTkZaRlJOVlRWWVYydGFhMVp0UlhkalNFNVdZbFJHVkZVd1dtRmtSVFZXWkVkb1YyRXpRWGRXYkdNeFVURlpkMDFWWkdwU1dHaFdXV3hvYjJGR2NFWmFSbVJVVWpGS1NGWlhjekZXTVZwSFYydHdWMkpVUWpOVVZscGFaVVphZFZWc1VtaE5iRXA0VmxjMWQyTXhiRmRYYmtwWFlsVmFUMVJXV25kVFJsbDVUVlZrVjFKcmNGWlZiWGhoVmpGWmVtRkVUbGRoYTBZMFZXeGFZV05XWkhOaFJtUnBVbGhDVWxZeWRGTlRNVWw0VTFob1ZXSkhlSEJWYWs1dlZrWmFjbHBFVWxoV2JWSlpXbFZqTldGVk1WaGxSbWhYVmpOb2FGWXdaRXRXYkdSMVVteGthVmRGTVRSWGJGWmhWakZrU0ZacmJHRlNiVkpQV1ZST1ExZFdXbFZUYWtKclRWWnNORll5Y0dGVmJHUklZVVpvVm1FeFdqTlZNRnB6VG14S2NrOVhkRmRpUm05M1YxWldZVlF5UmxkWFdHeG9VbnBzV0Zsc1VrWmtNVnB4VW01T1dGSnJjSGxYYTJSM1ZUSktWMU5zY0ZoV2VrSTBWbFJHYTFJeVNrbFRiVVpUWVhwV1VGWnRNVFJrTVU1WFZXeGthRkl6VWxoVVZWSkhaVlphZEdOSFJsZGlSbXcyVlZjeGIxWXdNVWRqUjJoV1lsaG9VRnBHV2s5ak1WcDBZVVUxV0ZKVmNGcFdha28wV1Zac1YxVlliRlZYUjJoeFZXeGtVMVl4YkhOYVJ6bHFVbXhhZWxsVlZrOVhSMHBIWWtSU1YwMXFSWGRXUjNoS1pVWk9kV0pHVmxkaVJuQjVWbTF3UzFJeVRYbFVhMlJYWWtoQ1dGVnNhRU5XVmxwMFpVZEdWMDFzU2tsV1IzQmhWVEpLV1dGR2FGcGhNbEY2VkZaYVlWSXhaSFJQVjJoT1ZtNUNOVlpHV205VE1rWnpVMjVXVW1KVldsaFphMXAzVFRGd1dHVkdjR3ROVjFKNldUQmtOR0ZXV2xkalJYUlhZV3R2TUZsVVJscGxSazV6V2tkd1ZGSXphRmxXYlhCUFVURk9SMk5GVmxOaE0wSnpWV3BCTVZJeGJGWlhhemxvVm10d1ZsWnROV3RXTWtwVlVsaGtZVkpGUlhoVmFrWnJaRlpPYzJGSGJGZFdia0l5Vm10YVlWbFdXWGROU0doV1lrZFNXVmxzYUZOWFJsSllaRWhrYkdKR1ZqVlViRlUxVmpKS1ZtTkZhRlpOYWxZelZqSXhSMk5zWkhSaFIwWlRWakZLVlZaVVJtRlZNazV5VDFaa1ZXSlhlRlJaYTJRd1RrWmFkR1JIZEU5U01GcDVWR3hhYTFkR1pFaFZhemxYWWxob00xa3hXbFprTWtaR1ZHeHdWMkpGY0ZoV01uUnFUbFphVjFOdVRtcFRSMmhYV1d4U1IxTkdXbFZUYTNSWFlYcFdWMWxWV25kV01WcDFVVmh3V0ZZelVuSlZiVEZYWXpGS2RWTnJOVmRpVmtwWlZrWlNRMU14VGxkYVJtUldZVE5TVjFSV1ZuTk9SbHBJVGxaa1YxWXdjRWhaTUdoRFZtMUtSMU5zYUZkTlZuQm9WakJWZUZaV1ZuUmtSMnhYWWtoQ1dsWnRjRXBOVmxWNFZXNU9WV0V5YUZkWmJYTXhWakZzY2xkcmRGaFNiRlkwVmpJeFIxWXdNWEpYYTNCWFVqTm9jbFpITVVabGJFWnlZMFprYVZJd05IcFdSM2hoV1ZaWmVGcElTbGhpV0VKVVdXdFdkMWRXV2tkWGJVWnJUV3hhZWxrd1ZtRldNV1JJWVVab1ZWWnNjRXhhVjNoelZteGtjazlYYUZkaE0wSmhWbFpqZUZJeFdYZE5XRlpXWWtkb1lWbFhkSGRTTVhCV1YyMTBhbUpJUWtoWlZXUnpZVWRXYzFkcVVsZGlSMUV3V1ZSQk1WSXlTa2RhUmxwcFVtNUNXbGRYTUhoVk1WbDRWbTVTYkZOSFVuTlZiWGhoVFVad1ZtRkhkR2hTVkVaR1ZXMTRiMWRyTVVoaFNGcFhZV3R3VEZZeFpFZFRWazV6V2tkb2FFMUdiRFpXTW5oaFlURkplRk5ZYUZSaWF6Vm9WV3hTVjFkR2JIUmtSWFJyWWtad2VGVnRNVWRoUlRGWFUycENWMkpZYUhKV2JURkxZMjFPU0U5V1dtaGhNMEl5Vm0xMFlXTXlVa2hWYTFwclVteHdWRmxzV2t0WGJGcEhWbTA1YVUxcldsbFZNbmhyVjBkS2RWRnNhRlZXZWxaMldrZDRjMWRIVmtaa1JtaFRZa1p2ZUZaVVNqUldNVmw1VTJ0a1YyRnNTbGhXYTFaaFlVWmFkRTFXWkZoU2JGcDVXVlZhUTFZd01YUmhSbXhZVm14S1VGVlVRVEZXTVdSeVlVZDRVMDFHY0hoV1JscGhaREF4UjFaWWJHdFNNMUpaVldwQ1lXVldVbk5YYlRsWFRXdFdORll5TVc5WGJGcFhZMFJPVm1KWWFHaFdNV1JIVWpGV2MxcEhiR2hOU0VKTVZtcEtORll4YkZkVldHaFlWMGRvVlZsdGN6RmpWbFp6WVVaT1dGSnRlSGxYYTFwTFZHeEtkR1ZJYUZaTmJsSXpXV3RhUzJSR1ZuTmpSbkJYVmpGS1NWWnNVa2RYYlZaWVVtdHNXR0pIVWxoVVZFSkxWRlprV0dORlpGaGlWbHBKVlRKMGMxWkhTbFpYYkZKYVYwaENXRll4V21GWFJURlZWVzEwVG1KR2NFbFdiVEF4VlRGUmVGZHNWbWxTZW14aFdXdGFZVTB4VlhoWGJVWllVakExUjFkcldtOVZNREZIVjFSQ1dGWkZTblpWZWtaYVpVWk9XV05IYUZOTlJuQnZWbTAxZDFJeFRrZFdia1pUWW0xU1ZGUldhRU5UUm1SeVYyczVWMDFzV2pCWGFrNTNWakpLVlZKWVpGZFdSVnBQV2xWYVQxZFhTa2RXYld4b1RUQktVVlp0TUhkbFJsVjVVbXRrVjJKcldsWlpWRUV4VjBaV2RHVkhSbXhpUm5Bd1ZHeGtNR0ZHV2xWU2JHaGFUVVpLUkZkV1dtRlhSbFp5WVVaa1RsSXhTazFXYlhCSFV6Sk9WMVp1VG1wU01taFBXV3hrYjFSc1duRlNiVVphVm1zeE5GZHJXbXRXTWtweVRsWmtXbUV4Y0doV01GcFRWbFpHV1dGRk9WTmlTRUphVmtaYVUxVXhXWGROVm1oV1lUSjRXRmxzYUZOamJHUlhWMnQwYTFKc1dubFVNVnByWVZaYVIxZHJWbGRTTTJob1dWUkdZVll4U25WVmJFNXBWMFZLVUZadE1IaE5NREZYVjJ4V1ZHRnNTbkZVVmxwaFRVWldjMkZIZEZWTlZtdzFXVlZhYjFkdFJYaGpSRTVWVmtWYWFGVnRlR3RrUmtwMFkwWmthRTB3U1RGV2ExSkhZVEF4UjFkWWJGUmhNWEJ3VkZSS1UxZEdXblZqUlZwT1VteHdSbFV5ZEd0WFJrcHlZMFp3V0dFeVVqTldWRVpMVmxaYWMySkdaRk5pU0VKNVZtdFNRazFXU1hoV2JrNVlZa2RvYjFwWGVHRmxiRnBZVFZSU1dsWXhXbnBYYTJoTFYwZEtWV0pIT1ZkaGEwb3pWV3BHY21ReFpISlViR1JPVm01Q1NGWlVTVEZUTVdSMFVtNUtXR0pYYUZoWlYzUmhWMFpzTmxKdVpGUlNhM0I2VmtjeGIySkhTa2RqUjJoWFlsaG9jVnBWVlRGVFJsWlpXa1UxVjFZeFNsaFhWekY2VFZaa1YySklUbWhTYXpWWlZtMTRZVTFHY0VaaFJUbFZZWHBHV1ZwRlVrOVdNa3BWVm14Q1YyRnJSalJXYWtwTFRteE9jMWRzWkdsU1dFSktWbTB4ZDFGdFZraFZiR2hUWVRKb2IxVnRlSGRqUmxsM1drYzViRlp0VWxaVmJURkhWbXN4Y2sxVVZsZFNNMUoyV1ZWYVNtVlhSa1pQVm1ST1VteHdUVlpHWkRSWlYxSkdUVlpzWVZKcmNFOVdiVFZDWkRGYWRFMVVRbWhOVjFKSlZUSjBiMVp0U2toaFIwWmFZa2RvZGxaRlduTmpWa3B6V2tkd1RsWnNjRFpXTW5Scll6RlNjMXBGV2xSaVNFSlpXV3RhWVdGR2JGVlNiRTVxWVhwR1dGZHJaSGRWTVVwV1kwWmtWMkpZYUhKWmFrcFRZekZrY21GSGVGTlhSVXA1VmtaYVlXUXlWa2RYYkdoc1UwZFNiMVZzVWtkWGJGWllUbGhPVjAxcmNGcFdWekZ2VjJ4YVJsZHNRbFpOUm5Cb1dUSXhSMUl4Um5OYVIyeFVVbFZ2ZWxacVJtcGxSVEZIVkZoa1QxZEZOVmxaYlhoTFZERmFjbGRyZEZwV2JIQjRWVlpTUjJKSFNrZGlSRlpWWWtaWmQxbFZWWGhXYlU1SlkwWmtUbUp0YUZWV2FrbDRVbTFXV0ZKcldsWmlSMUpQV1cweGIyVldaRmxqUldSYVZqRktTVlpYZEd0V1YwWTJWbTA1VlZadGFFTlVWbHBoWTJ4a2RGSnNjRmROUjNjeFZsZDRiMkl4V2toU1dHeFdZbXRhVjFsWGRFdGhSbGwzVjI1T2FtSkhVakZYYTFwclZHeGFjbU5HYkZkaGEydzBWV3BHV21WR1pIVlRhemxZVWpOb2IxWlhlR0ZrTWxKelYyNUdVbGRIYUZSVVYzTXhVakZzY2xkdE9WZE5WWEJYV1RCak5WZEdXbk5UYTNoV1lXdGFURmt5YzNoV01YQklZa1pPYUUwd1NqSldNVnBUVkRGRmVGcElUbGhpYkVweFZXeFNjMVV4VWxkWGEzUlVVbXh3TUZSc1ZtdFdNVWwzVjFSS1YySlVWbEJXYlRGTFYxZEdSbVZHVmxkaVNFSnZWbFJDVm1WR1pFWlBWbVJZWVhwV1ZGVnNXbk5OTVZsNFYyeGtXbFp0ZUZoV01XaHZWMFprU1ZGdE9WWmlWRVoyV1ZWYVYyTnNXblJTYlhCcFVteHdORlpYTURGaE1WVjNUVmhLV0dFeWVHaFdiRnAzVlVac2NscEZkRmhXTUZwSVdWVmFhMVJzV1hoU1dHUlhUVlp3YUZsNlJscGxSbFoxVTIxR1UySlhhRnBXVjNCUFlqSldWMWRzYUU1VFIyaFhWRlphYzA1R1dsaGxSemxvVFZVMVNWWlhlRzlXVmxwelkwaHdWV0pHY0ZSWmVrWmhaRWRTUjFwRk5WZGlhMGt5VmpGU1ExVXhSWGhYV0doWVYwaENiMVZ0ZUV0WFZscDBaVWhrV2xadVFsbFVWbFpyVmtaWmQyTkZiRlppV0doUVZsUkdZV1JGT1ZWWGJHUnBVakZGZDFZeFdtRlhiVlpYVm01S2FGSnJOVzlVVjNoTFlqRmFXR05GZEdsTlZrWTBWbGQ0WVZZeVNrbFJhemxXWWxob00xUlZXbmRXYkhCR1drWm9hVkp0ZDNwWFYzUlRWakZhZEZOcmFHaFRSbkJaVm0xNGQxUkdXWGRhUldSVFRWWndlbGt3V210Vk1XUkdVMnhhVjJKWVFraFhWbVJPWlZaV2NtRkdXbWhOYm1odlZsY3dlRlV4VVhoWGJrWlZZbFJzV1ZsclpGTmxWbHAwVFZSQ1ZrMUVSbmxXTW5SdlZtc3hjVlpzVWxwV1JWcE1WV3BHYTJSR1NuUlNiR1JPVFVSRk1GWXlkR3RPUm14WVZHeGtVMkpIZUc5VmJURnZWa1pzY2xkdVpFOVNiSEJZVjJ0U1UyRXdNWEpYYTJSVlZteHdlbFpYTVV0U2JHUnpZVVp3YUUxWVFrMVdhMVpoVmpKU1JrMVdaR0ZTTTBKUFZteG9RbVZHV25OYVJGSlNUVlpzTlZVeWVHdFdSMHBHVTJ4b1dtSkdTa05hVlZwWFZsWktkRkpzWkU1V01VbzJWMVpXYTJReFZYaGFSV1JVWWtkb1dWWnFUbTloUm1SWFYyMTBVMDFYVW5wWlZWVTFWakpLVjFOc2JGZGlXRUpFV2tSR1QxWXlTa2RYYkdocFlYcFdXVmRYZUZkWlYxWlhWMWhzYTFKR1NsbFpiRlpoWlZaWmVVMVhPVmROUkVaSlZsZDRiMVpyTVVkV1ZFWlhZV3RhY2xreWN6RlhSMFpJWlVkc1UySnJTbTlXYlRGM1VqSkZkMDFWYUZSWFIyaFhWakJrYjFkV1dYZGFSemxZVm0xNFZsVnROV3RYUmxwMFpVaHNWMDF1VVhkV2FrcExVakpPUlZGdFJsZFdNbWg1Vm0xMFlWTXlUWGhVYmxacFVtMVNUMWx0TVc1bGJHUllaRWRHV2xac2NGaFZNalZQVjBkS1IyTkdhR0ZXTTFKb1ZGZDRZV014Vm5Ka1JsSk9WbFJXV1ZaWE1UUmpNV3hYVTI1U1ZtSnJTbGRaVjNSaFUwWlNWVkp0ZEZoV01EVkhWMnRrYjFSc1dsVldhMnhYVmtWcmVGWnFSbUZUUmtweFYyMXNVMkpYYUZoWFYzUmhVekZrUjFkWWFGaGlXRkpZVkZab1ExSnNWbGhOVkVKVllrWndWbFp0ZEhOWFJscHpVMnhDV21WcmNFeFZha1pQWXpGYWRHSkdVbE5YUlVwWlZqRmFhMDFHVFhsU2EyUlhWMGRTV1ZsdGRIZGpiRkpYWVVWT1UySkdjRmxVVm1NMVZtc3hWMk5GWkZkTmFrWklWbXBHWVdSR1ZuRlViR1JvWVRGd2FGZHNXbUZVTWsxNVUydGtWR0pYYUU5V2JHaERXVlphZEUxSWFFOVNNVVkwVmpGb2IyRnNTblJWYkd4YVlURlZlRmt5ZUdGa1IxWkdaRVUxVTJKWVVYcFdha3A2VGxaWmQwMVZWbE5oYTBwaFZteGFkMkZHV25GUldHaFlVbXhhV2xkcldtdGhWbVJHVGtSQ1YyRnJTbWhXVkVwUFl6Sk9SbHBIYUZOTmJtaDNWbGQ0YjFFd05WZFhiazVXWVRBMWIxUldXbGRPUm1SeVZtMTBhRlpyTlVkWk1GcHpWMjFLV1ZSWWFGZFdWbkJZV2tWVmVGWXhVblJsUm1ScFUwVktZVll5ZEZkV2F6VlhXa1ZrVkZkSFVuRlZiR1J2V1Zac1ZWSnJkRmRTYkhBd1ZGWldNRmRHV25KWGJuQldWak5vY2xsV1drcGxSazV5VFZaa1YwMHdTazFXYTFKSFZERlplRlZ1VmxWaVZWcFVWbXRhWVZaV1drZFhiR1JyVFZaS2VsWXhhRzloUms1SVZXeFNWVlpzY0VoVWJGcGhVMFUxVm1SR1dsTmlTRUYzVm14amVHSXhXblJTYmtwcVUwWndXRlZyVm1GaFJuQkdWbFJHVjJKR1NucFdiVEZ6VlRKS2NsTlVRbGRpUjA0eldsVmFTbVZHY0VsVWJHaHBZa1Z3ZWxaWE1IaE9SbVJIVjI1R1ZXSkZOWEpaYTFwM1pVWlZlV1JIUm1sU2Eyd3pWR3hXYzFkc1dsZGpSMmhhVm14d1RGa3lNVTlTVm1SeldrZHNXRkpyY0haV01XaDNVekZSZVZWclpGUmlhM0JaV1d0YVMyTkdXWGRYYTNSV1VteHdNRmt3Vm10V1JURkZWbTV3VjAxcVZsUldSM2hQVTBkR1IxVnNWbGROTVVwdlZsZHdSMVV4V1hoYVNGSnJVakpvY0ZWc2FFSmtNV1J6Vm0xR2FFMVdjRmhXTW5CaFZqSktSMU50UmxkaVJuQXpXbGQ0V21ReGNFZGFSazVwVm10d1NWZFdWbUZVTVZKelYyNVdVbUV6VWxoWmEyUlBUa1pTY2xkc2NHeFNiVkphV1ZWYVUyRldTbk5qUm14WVZteEtTRmRXV210V01rcEpVMnhvYVdKV1NuWldWekUwWkRKV1IxWnVVbXRUUjFKd1ZXMTBkMlZXVW5OaFNHUlhUV3R3VmxWdE5YZFdNVnBHWTBWa1lWWlhVbEJWYWtwSFVqRndTR0pHYUZOaE0wSlhWbTE0WVdFeVZuSk5WbVJYWW1zMVUxbHJXbUZVTVZaeVZXdEtVRlZVTURrPQ

    priminity

    So all the code does is just add 2 until its a prime (repeated up to 255 times) This means that the primes are fairly close and could be easily brute forced (file included)

    Then calc d

    hashtag
    flag{pr1m3_pr0x1m1ty_c4n_b3_v3ry_d4ng3r0u5}